Mostrar el registro sencillo del ítem

dc.contributor.author
Machado, Sebastián Pablo  
dc.contributor.author
Febbo, Mariano  
dc.contributor.author
Gatti, Claudio David  
dc.contributor.author
Osinaga, Santiago Manuel  
dc.date.available
2021-09-22T18:48:51Z  
dc.date.issued
2020-09-10  
dc.identifier.citation
Machado, Sebastián Pablo; Febbo, Mariano; Gatti, Claudio David; Osinaga, Santiago Manuel; A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting; IOP Publishing; Smart Materials & Structures; 29; 9; 10-9-2020; 1-15  
dc.identifier.issn
0964-1726  
dc.identifier.uri
http://hdl.handle.net/11336/141221  
dc.description.abstract
To predict electrical generation in piezoelectric small-scale beam energy harvesting devices, it is important to have a complete mathematical model that captures the different associated phenomena. In the literature, some authors propose several alternatives of non-linear mathematical formulations, with non-linearities coming from different physical aspects. All these formulations present good aptitudes to predict the nonlinear behavior of the system under different values of accelerations, geometry and boundary conditions. At the same time, they do not represent a unified general proposal for modeling multimodal energy harvesting devices of any type of mode generation and boundary conditions at large excitations. In this sense, this paper presents a mathematical description of inextensional nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters (geometric, material and damping non-linearities). The developed analytical model yields a total set of N+ 1 ordinary differential equations for the first N modes and for the output voltage. However, direct solution of this ordinary nonlinear differential system of N equations is computationally costly. Instead, a reduced algebraic system of 2 algebraic equations is proposed applying the method of averaging. Its main advantage is that it makes more suitable and computationally economical for the implementation of a parameter identification process involving any number of piezoelectric inserts (unimorph or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for some selected physical systems to test the validity of the assumptions: a numerical one, by the direct integration of the equations of motion and an experimental one. A final comparison between the results demonstrates the importance of the having a unified nonlinear model to predict the generated voltage in multimodal energy harvesters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GEOMETRICAL AND DAMPING NON-LINEARITIES  
dc.subject
MATERIAL  
dc.subject
MULTIMODAL SYSTEMS  
dc.subject
PIEZOELECTRIC ENERGY HARVESTING  
dc.subject
REDUCED ALGEBRAIC EQUATIONS  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-18T14:14:24Z  
dc.journal.volume
29  
dc.journal.number
9  
dc.journal.pagination
1-15  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina  
dc.description.fil
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Gatti, Claudio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina  
dc.description.fil
Fil: Osinaga, Santiago Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina  
dc.journal.title
Smart Materials & Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-665X/ab9ddb  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-665X/ab9ddb