Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting

Machado, Sebastián PabloIcon ; Febbo, MarianoIcon ; Gatti, Claudio DavidIcon ; Osinaga, Santiago ManuelIcon
Fecha de publicación: 10/09/2020
Editorial: IOP Publishing
Revista: Smart Materials & Structures
ISSN: 0964-1726
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

To predict electrical generation in piezoelectric small-scale beam energy harvesting devices, it is important to have a complete mathematical model that captures the different associated phenomena. In the literature, some authors propose several alternatives of non-linear mathematical formulations, with non-linearities coming from different physical aspects. All these formulations present good aptitudes to predict the nonlinear behavior of the system under different values of accelerations, geometry and boundary conditions. At the same time, they do not represent a unified general proposal for modeling multimodal energy harvesting devices of any type of mode generation and boundary conditions at large excitations. In this sense, this paper presents a mathematical description of inextensional nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters (geometric, material and damping non-linearities). The developed analytical model yields a total set of N+ 1 ordinary differential equations for the first N modes and for the output voltage. However, direct solution of this ordinary nonlinear differential system of N equations is computationally costly. Instead, a reduced algebraic system of 2 algebraic equations is proposed applying the method of averaging. Its main advantage is that it makes more suitable and computationally economical for the implementation of a parameter identification process involving any number of piezoelectric inserts (unimorph or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for some selected physical systems to test the validity of the assumptions: a numerical one, by the direct integration of the equations of motion and an experimental one. A final comparison between the results demonstrates the importance of the having a unified nonlinear model to predict the generated voltage in multimodal energy harvesters.
Palabras clave: GEOMETRICAL AND DAMPING NON-LINEARITIES , MATERIAL , MULTIMODAL SYSTEMS , PIEZOELECTRIC ENERGY HARVESTING , REDUCED ALGEBRAIC EQUATIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.334Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/141221
URL: https://iopscience.iop.org/article/10.1088/1361-665X/ab9ddb
DOI: http://dx.doi.org/10.1088/1361-665X/ab9ddb
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
Machado, Sebastián Pablo; Febbo, Mariano; Gatti, Claudio David; Osinaga, Santiago Manuel; A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting; IOP Publishing; Smart Materials & Structures; 29; 9; 10-9-2020; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES