Artículo
The algebraic method enables one to study the properties of the spectrum of a quadratic Hamiltonian through the mathematical properties of a matrix representation called regular or adjoint. This matrix exhibits exceptional points where it becomes defective and can be written in canonical Jordan form. It is shown that any quadratic function of K coordinates and K momenta leads to a 2K differential equation for those dynamical variables. We illustrate all these features of the algebraic method by means of the Pais–Uhlenbeck oscillator and its PT-variant. La méthode algébrique nous permet d’étudier les propriétés du spectre d’un hamiltonien quadratique via les propriétés mathématiques d’une représentation matricielle appelée régulière ou adjointe. La matrice présente des points exceptionnels où elle devient défectueuse et peut être écrite sous une forme canonique de Jordan. Nous montrons que toute fonction quadratique des K coordonnées et des K impulsions mène à une équation différentielle d’ordre 2K pour ces variables dynamiques. Nous illustrons toutes ces caractéristiques de la méthode algébrique par le biais de l’oscillateur de Pais–Uhlenbeck et de sa modification PT.
Algebraic treatment of the pais-uhlenbeck oscillator and its pt-variant
Fecha de publicación:
10/2020
Editorial:
National Research Council Canada-NRC Research Press
Revista:
Canadian Journal Of Physics
ISSN:
0008-4204
e-ISSN:
1208-6045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Fernández, Francisco Marcelo; Algebraic treatment of the pais-uhlenbeck oscillator and its pt-variant; National Research Council Canada-NRC Research Press; Canadian Journal Of Physics; 98; 10; 10-2020; 949-952
Compartir
Altmétricas