Mostrar el registro sencillo del ítem

dc.contributor.author
Presser, Demian Javier  
dc.contributor.author
Cafaro, Vanina  
dc.contributor.author
Zamarripa, Miguel  
dc.contributor.author
Cafaro, Vanina  
dc.contributor.other
Eden, Mario R.  
dc.contributor.other
Ierapetritou, Marianthi G.  
dc.contributor.other
Towler, Gavin P.  
dc.date.available
2021-09-20T20:53:28Z  
dc.date.issued
2018  
dc.identifier.citation
Optimal Strategies for Carbon Dioxide Enhanced Oil Recovery under Uncertainty; 13th International Symposium on Process Systems Engineering (PSE 2018); San Diego; Estados Unidos; 2018; 1507-1512  
dc.identifier.isbn
978-0-444-64243-1  
dc.identifier.uri
http://hdl.handle.net/11336/140935  
dc.description.abstract
This work presents a two-stage stochastic programming model to optimize the expected net present value (ENPV) of CO2-EOR projects under uncertainty. The mathematical formulation relies on a multi-period planning approach aimed to find the optimal exploitation strategy for a mature oil reservoir. Given uncertain prices and productivity scenarios, the model sets the most convenient time to launch the CO2-EOR project, and establishes efficient operating conditions over the planning horizon. It determines the number of production and injection wells to operate at every period, the CO2 injection rate in every well, and the timing for maintenance and conversion tasks. The problem complexity grows rapidly with the number of wells and scenarios considered, resulting in a large-scale decision-making problem. Well productivity forecast functions are nonlinear (typically hyperbolic), yielding a mixed integer nonlinear (MINLP), nonconvex formulation. A moving horizon framework is adopted to take recourse actions when uncertain production parameters are revealed. The proposed approach helps operators to increase CO2-EOR profitability by minimizing losses in low-price and productivity scenarios and maximizing the gain under more promising conditions  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Carbon Dioxide Enhanced Oil Recovery  
dc.subject
Stochastic Programming  
dc.subject
Optimization  
dc.subject
MINLP  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Optimal Strategies for Carbon Dioxide Enhanced Oil Recovery under Uncertainty  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2021-09-17T16:46:38Z  
dc.identifier.eissn
1570-7946  
dc.journal.volume
44  
dc.journal.pagination
1507-1512  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Presser, Demian Javier. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.description.fil
Fil: Cafaro, Vanina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Zamarripa, Miguel. Oak Ridge Institute For Science And Education; Estados Unidos  
dc.description.fil
Fil: Cafaro, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/B9780444642417502469  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-444-64241-7.50246-9  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Simposio  
dc.description.nombreEvento
13th International Symposium on Process Systems Engineering (PSE 2018)  
dc.date.evento
2018-07-01  
dc.description.ciudadEvento
San Diego  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Computer Aids for Chemical Engineering  
dc.source.revista
Computer Aided Chemical Engineering  
dc.date.eventoHasta
2018-07-05  
dc.type
Simposio