Mostrar el registro sencillo del ítem
dc.contributor.author
Presser, Demian Javier
dc.contributor.author
Cafaro, Vanina
dc.contributor.author
Zamarripa, Miguel
dc.contributor.author
Cafaro, Vanina
dc.contributor.other
Eden, Mario R.
dc.contributor.other
Ierapetritou, Marianthi G.
dc.contributor.other
Towler, Gavin P.
dc.date.available
2021-09-20T20:53:28Z
dc.date.issued
2018
dc.identifier.citation
Optimal Strategies for Carbon Dioxide Enhanced Oil Recovery under Uncertainty; 13th International Symposium on Process Systems Engineering (PSE 2018); San Diego; Estados Unidos; 2018; 1507-1512
dc.identifier.isbn
978-0-444-64243-1
dc.identifier.uri
http://hdl.handle.net/11336/140935
dc.description.abstract
This work presents a two-stage stochastic programming model to optimize the expected net present value (ENPV) of CO2-EOR projects under uncertainty. The mathematical formulation relies on a multi-period planning approach aimed to find the optimal exploitation strategy for a mature oil reservoir. Given uncertain prices and productivity scenarios, the model sets the most convenient time to launch the CO2-EOR project, and establishes efficient operating conditions over the planning horizon. It determines the number of production and injection wells to operate at every period, the CO2 injection rate in every well, and the timing for maintenance and conversion tasks. The problem complexity grows rapidly with the number of wells and scenarios considered, resulting in a large-scale decision-making problem. Well productivity forecast functions are nonlinear (typically hyperbolic), yielding a mixed integer nonlinear (MINLP), nonconvex formulation. A moving horizon framework is adopted to take recourse actions when uncertain production parameters are revealed. The proposed approach helps operators to increase CO2-EOR profitability by minimizing losses in low-price and productivity scenarios and maximizing the gain under more promising conditions
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Carbon Dioxide Enhanced Oil Recovery
dc.subject
Stochastic Programming
dc.subject
Optimization
dc.subject
MINLP
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Optimal Strategies for Carbon Dioxide Enhanced Oil Recovery under Uncertainty
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2021-09-17T16:46:38Z
dc.identifier.eissn
1570-7946
dc.journal.volume
44
dc.journal.pagination
1507-1512
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Presser, Demian Javier. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.description.fil
Fil: Cafaro, Vanina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Zamarripa, Miguel. Oak Ridge Institute For Science And Education; Estados Unidos
dc.description.fil
Fil: Cafaro, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/B9780444642417502469
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-444-64241-7.50246-9
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Simposio
dc.description.nombreEvento
13th International Symposium on Process Systems Engineering (PSE 2018)
dc.date.evento
2018-07-01
dc.description.ciudadEvento
San Diego
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Computer Aids for Chemical Engineering
dc.source.revista
Computer Aided Chemical Engineering
dc.date.eventoHasta
2018-07-05
dc.type
Simposio
Archivos asociados