Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Optimal Strategies for Carbon Dioxide Enhanced Oil Recovery under Uncertainty

Presser, Demian JavierIcon ; Cafaro, VaninaIcon ; Zamarripa, Miguel; Cafaro, VaninaIcon
Colaboradores: Eden, Mario R.; Ierapetritou, Marianthi G.; Towler, Gavin P.
Tipo del evento: Simposio
Nombre del evento: 13th International Symposium on Process Systems Engineering (PSE 2018)
Fecha del evento: 01/07/2018
Institución Organizadora: Computer Aids for Chemical Engineering;
Título de la revista: Computer Aided Chemical Engineering
Editorial: Elsevier
e-ISSN: 1570-7946
Idioma: Inglés
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

This work presents a two-stage stochastic programming model to optimize the expected net present value (ENPV) of CO2-EOR projects under uncertainty. The mathematical formulation relies on a multi-period planning approach aimed to find the optimal exploitation strategy for a mature oil reservoir. Given uncertain prices and productivity scenarios, the model sets the most convenient time to launch the CO2-EOR project, and establishes efficient operating conditions over the planning horizon. It determines the number of production and injection wells to operate at every period, the CO2 injection rate in every well, and the timing for maintenance and conversion tasks. The problem complexity grows rapidly with the number of wells and scenarios considered, resulting in a large-scale decision-making problem. Well productivity forecast functions are nonlinear (typically hyperbolic), yielding a mixed integer nonlinear (MINLP), nonconvex formulation. A moving horizon framework is adopted to take recourse actions when uncertain production parameters are revealed. The proposed approach helps operators to increase CO2-EOR profitability by minimizing losses in low-price and productivity scenarios and maximizing the gain under more promising conditions
Palabras clave: Carbon Dioxide Enhanced Oil Recovery , Stochastic Programming , Optimization , MINLP
Ver el registro completo
 
Archivos asociados
Tamaño: 170.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/140935
URL: https://www.sciencedirect.com/science/article/abs/pii/B9780444642417502469
DOI: https://doi.org/10.1016/B978-0-444-64241-7.50246-9
Colecciones
Eventos(INTEC)
Eventos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Optimal Strategies for Carbon Dioxide Enhanced Oil Recovery under Uncertainty; 13th International Symposium on Process Systems Engineering (PSE 2018); San Diego; Estados Unidos; 2018; 1507-1512
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES