Mostrar el registro sencillo del ítem
dc.contributor.author
Pedrozo, Hector Alejandro
dc.contributor.author
Rodriguez Reartes, Sabrina Belen
dc.contributor.author
Bernal, David E.
dc.contributor.author
Vecchietti, Aldo
dc.contributor.author
Díaz, María Soledad
dc.contributor.author
Grossmann, Ignacio E.
dc.date.available
2021-09-14T16:08:43Z
dc.date.issued
2021-11
dc.identifier.citation
Pedrozo, Hector Alejandro; Rodriguez Reartes, Sabrina Belen; Bernal, David E.; Vecchietti, Aldo; Díaz, María Soledad; et al.; Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 154; 11-2021; 1-73; 107473
dc.identifier.issn
0098-1354
dc.identifier.uri
http://hdl.handle.net/11336/140336
dc.description.abstract
We propose a novel iterative procedure to generate hybrid models (HMs) within an optimization framework to solve design problems. HMs are based on first principle and surrogate models (SMs) and they may represent potential plant units embedded within a superstructure. We generate initial SMs with simple algebraic regression models and refine them by adding Gaussian Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after solving the optimal design problem, further domain exploitation, until the convergence criterion is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive Programming and solved with the Logic-based Outer Approximation algorithm. We addressed methanol synthesis and propylene plant design problems. Compared to rigorous model-based optimal design, the proposed HMs gave the same configuration, objective function and decision variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis shows that the proposed strategy reduced CPU time by 33 %.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GDP
dc.subject
HYBRID MODELS
dc.subject
LOGIC-BASED OUTER APPROXIMATION ALGORITHM
dc.subject
PROPYLENE PRODUCTION
dc.subject
STATE EQUIPMENT NETWORK
dc.subject
SUPERSTRUCTURE OPTIMIZATION
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-13T16:17:00Z
dc.journal.volume
154
dc.journal.pagination
1-73; 107473
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Massachusetts
dc.description.fil
Fil: Pedrozo, Hector Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Rodriguez Reartes, Sabrina Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
dc.description.fil
Fil: Bernal, David E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos
dc.description.fil
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Díaz, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
dc.description.fil
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos
dc.journal.title
Computers and Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135421002519
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2021.107473
Archivos asociados