Mostrar el registro sencillo del ítem

dc.contributor.author
Pedrozo, Hector Alejandro  
dc.contributor.author
Rodriguez Reartes, Sabrina Belen  
dc.contributor.author
Bernal, David E.  
dc.contributor.author
Vecchietti, Aldo  
dc.contributor.author
Díaz, María Soledad  
dc.contributor.author
Grossmann, Ignacio E.  
dc.date.available
2021-09-14T16:08:43Z  
dc.date.issued
2021-11  
dc.identifier.citation
Pedrozo, Hector Alejandro; Rodriguez Reartes, Sabrina Belen; Bernal, David E.; Vecchietti, Aldo; Díaz, María Soledad; et al.; Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 154; 11-2021; 1-73; 107473  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/140336  
dc.description.abstract
We propose a novel iterative procedure to generate hybrid models (HMs) within an optimization framework to solve design problems. HMs are based on first principle and surrogate models (SMs) and they may represent potential plant units embedded within a superstructure. We generate initial SMs with simple algebraic regression models and refine them by adding Gaussian Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after solving the optimal design problem, further domain exploitation, until the convergence criterion is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive Programming and solved with the Logic-based Outer Approximation algorithm. We addressed methanol synthesis and propylene plant design problems. Compared to rigorous model-based optimal design, the proposed HMs gave the same configuration, objective function and decision variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis shows that the proposed strategy reduced CPU time by 33 %.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GDP  
dc.subject
HYBRID MODELS  
dc.subject
LOGIC-BASED OUTER APPROXIMATION ALGORITHM  
dc.subject
PROPYLENE PRODUCTION  
dc.subject
STATE EQUIPMENT NETWORK  
dc.subject
SUPERSTRUCTURE OPTIMIZATION  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-13T16:17:00Z  
dc.journal.volume
154  
dc.journal.pagination
1-73; 107473  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Massachusetts  
dc.description.fil
Fil: Pedrozo, Hector Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Rodriguez Reartes, Sabrina Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.description.fil
Fil: Bernal, David E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos  
dc.description.fil
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Díaz, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.description.fil
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135421002519  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2021.107473