Artículo
Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming
Pedrozo, Hector Alejandro
; Rodriguez Reartes, Sabrina Belen
; Bernal, David E.; Vecchietti, Aldo
; Díaz, María Soledad
; Grossmann, Ignacio E.
Fecha de publicación:
11/2021
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Computers and Chemical Engineering
ISSN:
0098-1354
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose a novel iterative procedure to generate hybrid models (HMs) within an optimization framework to solve design problems. HMs are based on first principle and surrogate models (SMs) and they may represent potential plant units embedded within a superstructure. We generate initial SMs with simple algebraic regression models and refine them by adding Gaussian Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after solving the optimal design problem, further domain exploitation, until the convergence criterion is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive Programming and solved with the Logic-based Outer Approximation algorithm. We addressed methanol synthesis and propylene plant design problems. Compared to rigorous model-based optimal design, the proposed HMs gave the same configuration, objective function and decision variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis shows that the proposed strategy reduced CPU time by 33 %.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Pedrozo, Hector Alejandro; Rodriguez Reartes, Sabrina Belen; Bernal, David E.; Vecchietti, Aldo; Díaz, María Soledad; et al.; Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 154; 11-2021; 1-73; 107473
Compartir
Altmétricas