Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Roberto  
dc.contributor.author
de Paepe, Josefina  
dc.contributor.author
Gimenez, Analía  
dc.contributor.author
Recondo, Verónica  
dc.contributor.author
Pagnanini, Federico  
dc.contributor.author
Mendoza, Maria Rosa  
dc.contributor.author
Caride, Constanza  
dc.contributor.author
Ramil, Denis  
dc.contributor.author
Facio, Facundo  
dc.contributor.author
Berhongaray, Gonzalo  
dc.date.available
2021-09-08T17:43:59Z  
dc.date.issued
2020-03  
dc.identifier.citation
Alvarez, Roberto; de Paepe, Josefina; Gimenez, Analía; Recondo, Verónica; Pagnanini, Federico; et al.; Using a nitrogen mineralization index will improve soil productivity rating by artificial neural networks; Taylor & Francis; Archives of Agronomy and Soil Science; 66; 4; 3-2020; 517-531  
dc.identifier.issn
1476-3567  
dc.identifier.uri
http://hdl.handle.net/11336/139920  
dc.description.abstract
In the Pampas, nitrogen fertilization rates are low and soil organic matter impacts crop yield. Wheat (Triticum aestivum L.) yield was related to total soil nitrogen (total N) and to nitrogen mineralization potential (mineralized N) to determine whether the effects of organic matter may be attributed to its capacity to act as a nitrogen source or to the improvement of the soil physical condition. Data of 386 sites from throughout the region comprised in a recent soil survey were used, in which climate and soil properties to 1 m depth were determined. Artificial neural networks were applied for total N and mineralized N estimation using climate and soil variables as inputs (R2 = 0.59–0.70). The models allowed estimating total N and mineralizable N at county scale and related them to statistical yield information. Neural networks were also used for yield prediction. The best productivity model fitted (R2 = 0.85) showed that wheat yield could be predicted by rainfall, the photothermal quotient, and mineralized N. The soil organic matter effect on crop yield seems to be mainly related to its nitrogen mineralization capacity. Using mineralized N as predictor would be a valuable tool for rating soil productivity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
SOIL NITROGEN MINERALIZATION  
dc.subject
SOIL ORGANIC MATTER  
dc.subject
SOIL PRODUCTIVITY  
dc.subject
WHEAT YIELD  
dc.subject.classification
Ciencias del Suelo  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Using a nitrogen mineralization index will improve soil productivity rating by artificial neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T14:54:40Z  
dc.journal.volume
66  
dc.journal.number
4  
dc.journal.pagination
517-531  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Alvarez, Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: de Paepe, Josefina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Gimenez, Analía. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Recondo, Verónica. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Pagnanini, Federico. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Mendoza, Maria Rosa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Caride, Constanza. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Ramil, Denis. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Facio, Facundo. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Berhongaray, Gonzalo. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Archives of Agronomy and Soil Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03650340.2019.1626984?journalCode=gags20  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/03650340.2019.1626984