Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using a nitrogen mineralization index will improve soil productivity rating by artificial neural networks

Alvarez, RobertoIcon ; de Paepe, JosefinaIcon ; Gimenez, Analía; Recondo, Verónica; Pagnanini, Federico; Mendoza, Maria Rosa; Caride, Constanza; Ramil, Denis; Facio, Facundo; Berhongaray, GonzaloIcon
Fecha de publicación: 03/2020
Editorial: Taylor & Francis
Revista: Archives of Agronomy and Soil Science
ISSN: 1476-3567
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias del Suelo

Resumen

In the Pampas, nitrogen fertilization rates are low and soil organic matter impacts crop yield. Wheat (Triticum aestivum L.) yield was related to total soil nitrogen (total N) and to nitrogen mineralization potential (mineralized N) to determine whether the effects of organic matter may be attributed to its capacity to act as a nitrogen source or to the improvement of the soil physical condition. Data of 386 sites from throughout the region comprised in a recent soil survey were used, in which climate and soil properties to 1 m depth were determined. Artificial neural networks were applied for total N and mineralized N estimation using climate and soil variables as inputs (R2 = 0.59–0.70). The models allowed estimating total N and mineralizable N at county scale and related them to statistical yield information. Neural networks were also used for yield prediction. The best productivity model fitted (R2 = 0.85) showed that wheat yield could be predicted by rainfall, the photothermal quotient, and mineralized N. The soil organic matter effect on crop yield seems to be mainly related to its nitrogen mineralization capacity. Using mineralized N as predictor would be a valuable tool for rating soil productivity.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , SOIL NITROGEN MINERALIZATION , SOIL ORGANIC MATTER , SOIL PRODUCTIVITY , WHEAT YIELD
Ver el registro completo
 
Archivos asociados
Tamaño: 2.434Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/139920
URL: https://www.tandfonline.com/doi/abs/10.1080/03650340.2019.1626984?journalCode=ga
DOI: http://dx.doi.org/10.1080/03650340.2019.1626984
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(OCA PQUE. CENTENARIO)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA PQUE. CENTENARIO
Citación
Alvarez, Roberto; de Paepe, Josefina; Gimenez, Analía; Recondo, Verónica; Pagnanini, Federico; et al.; Using a nitrogen mineralization index will improve soil productivity rating by artificial neural networks; Taylor & Francis; Archives of Agronomy and Soil Science; 66; 4; 3-2020; 517-531
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES