Mostrar el registro sencillo del ítem

dc.contributor.author
Goberna, Miguel A.  
dc.contributor.author
López, Marco A.  
dc.contributor.author
Ridolfi, Andrea Beatriz  
dc.contributor.author
Vera de Serio, Virginia Norma  
dc.date.available
2021-09-07T13:11:07Z  
dc.date.issued
2020-02  
dc.identifier.citation
Goberna, Miguel A.; López, Marco A.; Ridolfi, Andrea Beatriz; Vera de Serio, Virginia Norma; A note on primal-dual stability in infinite linear programming; Springer Heidelberg; Optimization Letters; 14; 8; 2-2020; 2247-2263  
dc.identifier.issn
1862-4472  
dc.identifier.uri
http://hdl.handle.net/11336/139776  
dc.description.abstract
In this note we analyze the simultaneous preservation of the consistency (and of the inconsistency) of linear programming problems posed in infinite dimensional Banach spaces, and their corresponding dual problems, under sufficiently small perturbations of the data. We consider seven different scenarios associated with the different possibilities of perturbations of the data (the objective functional, the constraint functionals, and the right hand-side function), i.e., which of them are known, and remain fixed, and which ones can be perturbed because of their uncertainty. The obtained results allow us to give sufficient and necessary conditions for the coincidence of the optimal values of both problems and for the stability of the duality gap under the same type of perturbations. There appear substantial differences with the finite dimensional case due to the distinct topological properties of cones in finite and infinite dimensional Banach spaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONSISTENCY  
dc.subject
INCONSISTENCY  
dc.subject
INFINITE DIMENSIONS  
dc.subject
LINEAR PROGRAMMING  
dc.subject
PRIMAL-DUAL STABILITY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A note on primal-dual stability in infinite linear programming  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-01T13:49:55Z  
dc.journal.volume
14  
dc.journal.number
8  
dc.journal.pagination
2247-2263  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Goberna, Miguel A.. Universidad de Alicante; España  
dc.description.fil
Fil: López, Marco A.. Universidad de Alicante; España  
dc.description.fil
Fil: Ridolfi, Andrea Beatriz. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Vera de Serio, Virginia Norma. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina  
dc.journal.title
Optimization Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11590-020-01549-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11590-020-01549-4