Artículo
A note on primal-dual stability in infinite linear programming
Fecha de publicación:
02/2020
Editorial:
Springer Heidelberg
Revista:
Optimization Letters
ISSN:
1862-4472
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this note we analyze the simultaneous preservation of the consistency (and of the inconsistency) of linear programming problems posed in infinite dimensional Banach spaces, and their corresponding dual problems, under sufficiently small perturbations of the data. We consider seven different scenarios associated with the different possibilities of perturbations of the data (the objective functional, the constraint functionals, and the right hand-side function), i.e., which of them are known, and remain fixed, and which ones can be perturbed because of their uncertainty. The obtained results allow us to give sufficient and necessary conditions for the coincidence of the optimal values of both problems and for the stability of the duality gap under the same type of perturbations. There appear substantial differences with the finite dimensional case due to the distinct topological properties of cones in finite and infinite dimensional Banach spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Goberna, Miguel A.; López, Marco A.; Ridolfi, Andrea Beatriz; Vera de Serio, Virginia Norma; A note on primal-dual stability in infinite linear programming; Springer Heidelberg; Optimization Letters; 14; 8; 2-2020; 2247-2263
Compartir
Altmétricas