Mostrar el registro sencillo del ítem

dc.contributor.author
Roman, Nadia Denise  
dc.contributor.author
Bre, Facundo  
dc.contributor.author
Fachinotti, Victor Daniel  
dc.contributor.author
Lamberts, Roberto  
dc.date.available
2021-09-07T12:49:46Z  
dc.date.issued
2020-06-15  
dc.identifier.citation
Roman, Nadia Denise; Bre, Facundo; Fachinotti, Victor Daniel; Lamberts, Roberto; Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review; Elsevier Science SA; Energy and Buildings; 217; 15-6-2020; 1-22  
dc.identifier.issn
0378-7788  
dc.identifier.uri
http://hdl.handle.net/11336/139770  
dc.description.abstract
In most of the countries, buildings are often one of the major energy consumers, leading to the necessity of achieving sustainable building designs, and to the mandatory use of building performance simulation (BPS) tools in order to retrofit or design new energy efficient buildings. In the last years, the use of artificial neural networks (ANNs) metamodels has increased and gained confidence in BPS applications thanks to their favorable trade-off between accuracy and computational cost. This paper presents a comprehensive and in-depth systematic review of the up-to-date literature related to the application and characterization of ANN-based metamodels for BPS. First, a general insight into the methodology of metamodel generation and ANN theory is presented. The ANN metamodels are classified according to the type of building they are addressed to, screening them by their inputs (building design variables or indicators to take a certain decision) and outputs (energy consumption, comfort index, climatic condition, environment performance). Then, all the stages for the generation of ANN-based metamodels (sampling methods, data pre-processing, architectures, activations functions, the process of training and testing, and the platforms and frameworks for their implementation) are presented giving a brief theoretical introduction and making a critical review of the literature linked to each stage. For each of these analyzed stages, summary tables and graphs are presented showing the distributions of different alternatives and trends. Finally, the current limitations and areas for further investigation are discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
BUILDING PERFORMANCE SIMULATION  
dc.subject
ENERGY EFFICIENT BUILDINGS  
dc.subject
METAMODEL  
dc.subject
SURROGATE MODEL  
dc.subject.classification
Ingeniería Arquitectónica  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Termodinámica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-03-15T14:37:03Z  
dc.journal.volume
217  
dc.journal.pagination
1-22  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Roman, Nadia Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Lamberts, Roberto. Universidade Federal de Santa Catarina; Brasil  
dc.journal.title
Energy and Buildings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.enbuild.2020.109972  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S037877881933751X