Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review

Roman, Nadia DeniseIcon ; Bre, FacundoIcon ; Fachinotti, Victor DanielIcon ; Lamberts, Roberto
Fecha de publicación: 15/06/2020
Editorial: Elsevier Science SA
Revista: Energy and Buildings
ISSN: 0378-7788
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Arquitectónica; Termodinámica

Resumen

In most of the countries, buildings are often one of the major energy consumers, leading to the necessity of achieving sustainable building designs, and to the mandatory use of building performance simulation (BPS) tools in order to retrofit or design new energy efficient buildings. In the last years, the use of artificial neural networks (ANNs) metamodels has increased and gained confidence in BPS applications thanks to their favorable trade-off between accuracy and computational cost. This paper presents a comprehensive and in-depth systematic review of the up-to-date literature related to the application and characterization of ANN-based metamodels for BPS. First, a general insight into the methodology of metamodel generation and ANN theory is presented. The ANN metamodels are classified according to the type of building they are addressed to, screening them by their inputs (building design variables or indicators to take a certain decision) and outputs (energy consumption, comfort index, climatic condition, environment performance). Then, all the stages for the generation of ANN-based metamodels (sampling methods, data pre-processing, architectures, activations functions, the process of training and testing, and the platforms and frameworks for their implementation) are presented giving a brief theoretical introduction and making a critical review of the literature linked to each stage. For each of these analyzed stages, summary tables and graphs are presented showing the distributions of different alternatives and trends. Finally, the current limitations and areas for further investigation are discussed.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , BUILDING PERFORMANCE SIMULATION , ENERGY EFFICIENT BUILDINGS , METAMODEL , SURROGATE MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 3.589Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/139770
DOI: https://doi.org/10.1016/j.enbuild.2020.109972
URL: https://www.sciencedirect.com/science/article/abs/pii/S037877881933751X
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Roman, Nadia Denise; Bre, Facundo; Fachinotti, Victor Daniel; Lamberts, Roberto; Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review; Elsevier Science SA; Energy and Buildings; 217; 15-6-2020; 1-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES