Mostrar el registro sencillo del ítem

dc.contributor.author
Miccio, Luis Alejandro  
dc.contributor.author
Schwartz, Gustavo A.  
dc.date.available
2021-09-02T13:48:27Z  
dc.date.issued
2020-08  
dc.identifier.citation
Miccio, Luis Alejandro; Schwartz, Gustavo A.; Localizing and quantifying the intra-monomer contributions to the glass transition temperature using artificial neural networks; Elsevier; Polymer; 203; 8-2020; 1-6  
dc.identifier.issn
0032-3861  
dc.identifier.uri
http://hdl.handle.net/11336/139526  
dc.description.abstract
We used fully connected artificial neural networks (ANN) to localize and quantify, based on the monomer structure of several polymers, the specific features responsible for their observed glass transition temperatures (Tg). The use of ANNs allows us not only to successfully predict the Tg of the polymers but, even more important, to understand what parts of the monomer are mainly contributing to it. For this task, we used the weights of a trained ANN as obtained after fitting the input data (monomer structure) to the corresponding Tg value. The study was performed for a set of more than 200 atactic acrylates for which typical Tg defining features were identified. Thus, the ANN is able to recognize the relevance of the backbone stiffness, the length of pending groups or the presence of methyl groups on the value of the glass transition temperature. This approach can be easily extended to many other interesting properties of polymers and it is worth noting that only the monomer chemical structure is needed as input. This method is potentially useful for identifying orthogonal ways of tuning polymer properties during the design and development of new materials and it is expected that it will contribute to a better understanding of the polymer's behavior.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
POLYMERS  
dc.subject
PROPERTIES PREDICTION  
dc.subject
QSPR  
dc.subject
SMART DESIGN  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Localizing and quantifying the intra-monomer contributions to the glass transition temperature using artificial neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-19T20:34:05Z  
dc.journal.volume
203  
dc.journal.pagination
1-6  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Schwartz, Gustavo A.. Consejo Superior de Investigaciones Científicas; España  
dc.journal.title
Polymer  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0032386120306145  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.polymer.2020.122786