Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Localizing and quantifying the intra-monomer contributions to the glass transition temperature using artificial neural networks

Miccio, Luis AlejandroIcon ; Schwartz, Gustavo A.
Fecha de publicación: 08/2020
Editorial: Elsevier
Revista: Polymer
ISSN: 0032-3861
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

We used fully connected artificial neural networks (ANN) to localize and quantify, based on the monomer structure of several polymers, the specific features responsible for their observed glass transition temperatures (Tg). The use of ANNs allows us not only to successfully predict the Tg of the polymers but, even more important, to understand what parts of the monomer are mainly contributing to it. For this task, we used the weights of a trained ANN as obtained after fitting the input data (monomer structure) to the corresponding Tg value. The study was performed for a set of more than 200 atactic acrylates for which typical Tg defining features were identified. Thus, the ANN is able to recognize the relevance of the backbone stiffness, the length of pending groups or the presence of methyl groups on the value of the glass transition temperature. This approach can be easily extended to many other interesting properties of polymers and it is worth noting that only the monomer chemical structure is needed as input. This method is potentially useful for identifying orthogonal ways of tuning polymer properties during the design and development of new materials and it is expected that it will contribute to a better understanding of the polymer's behavior.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , POLYMERS , PROPERTIES PREDICTION , QSPR , SMART DESIGN
Ver el registro completo
 
Archivos asociados
Tamaño: 2.288Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/139526
URL: https://linkinghub.elsevier.com/retrieve/pii/S0032386120306145
DOI: http://dx.doi.org/10.1016/j.polymer.2020.122786
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Miccio, Luis Alejandro; Schwartz, Gustavo A.; Localizing and quantifying the intra-monomer contributions to the glass transition temperature using artificial neural networks; Elsevier; Polymer; 203; 8-2020; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES