Mostrar el registro sencillo del ítem

dc.contributor.author
Barbieri, Davide  
dc.contributor.author
Cabrelli, Carlos  
dc.contributor.author
Hernández, Eugenio  
dc.contributor.author
Molter, Ursula Maria  
dc.date.available
2021-09-01T12:34:34Z  
dc.date.issued
2020-10  
dc.identifier.citation
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Approximation by group invariant subspaces; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 142; 10-2020; 76-100  
dc.identifier.issn
0021-7824  
dc.identifier.uri
http://hdl.handle.net/11336/139412  
dc.description.abstract
In this article we study the structure of Γ-invariant spaces of L2(S). Here S is a second countable LCA group. The invariance is with respect to the action of Γ, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Γ-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Γ-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Γ-invariant subspace that best approximates a set of functional data in L2(S). This is very relevant in applications since in the euclidean case, Γ-invariant subspaces are invariant under rigid movements, a very sought feature in models for signal processing.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Gauthier-Villars/Editions Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DATA APPROXIMATION  
dc.subject
INVARIANT SUBSPACES  
dc.subject
OPTIMAL SUBSPACES  
dc.subject
PARSEVAL FRAMES  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Approximation by group invariant subspaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-30T18:50:27Z  
dc.journal.volume
142  
dc.journal.pagination
76-100  
dc.journal.pais
Francia  
dc.journal.ciudad
Paris  
dc.description.fil
Fil: Barbieri, Davide. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Hernández, Eugenio. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal de Mathematiques Pures Et Appliquees  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.matpur.2020.08.010  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021782420301501?via%3Dihub