Mostrar el registro sencillo del ítem
dc.contributor.author
Barbieri, Davide
dc.contributor.author
Cabrelli, Carlos
dc.contributor.author
Hernández, Eugenio
dc.contributor.author
Molter, Ursula Maria
dc.date.available
2021-09-01T12:34:34Z
dc.date.issued
2020-10
dc.identifier.citation
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Approximation by group invariant subspaces; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 142; 10-2020; 76-100
dc.identifier.issn
0021-7824
dc.identifier.uri
http://hdl.handle.net/11336/139412
dc.description.abstract
In this article we study the structure of Γ-invariant spaces of L2(S). Here S is a second countable LCA group. The invariance is with respect to the action of Γ, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Γ-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Γ-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Γ-invariant subspace that best approximates a set of functional data in L2(S). This is very relevant in applications since in the euclidean case, Γ-invariant subspaces are invariant under rigid movements, a very sought feature in models for signal processing.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Gauthier-Villars/Editions Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DATA APPROXIMATION
dc.subject
INVARIANT SUBSPACES
dc.subject
OPTIMAL SUBSPACES
dc.subject
PARSEVAL FRAMES
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Approximation by group invariant subspaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-30T18:50:27Z
dc.journal.volume
142
dc.journal.pagination
76-100
dc.journal.pais
Francia
dc.journal.ciudad
Paris
dc.description.fil
Fil: Barbieri, Davide. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Hernández, Eugenio. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Journal de Mathematiques Pures Et Appliquees
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.matpur.2020.08.010
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021782420301501?via%3Dihub
Archivos asociados