Artículo
Approximation by group invariant subspaces
Fecha de publicación:
10/2020
Editorial:
Gauthier-Villars/Editions Elsevier
Revista:
Journal de Mathematiques Pures Et Appliquees
ISSN:
0021-7824
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we study the structure of Γ-invariant spaces of L2(S). Here S is a second countable LCA group. The invariance is with respect to the action of Γ, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Γ-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Γ-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Γ-invariant subspace that best approximates a set of functional data in L2(S). This is very relevant in applications since in the euclidean case, Γ-invariant subspaces are invariant under rigid movements, a very sought feature in models for signal processing.
Palabras clave:
DATA APPROXIMATION
,
INVARIANT SUBSPACES
,
OPTIMAL SUBSPACES
,
PARSEVAL FRAMES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barbieri, Davide; Cabrelli, Carlos; Hernández, Eugenio; Molter, Ursula Maria; Approximation by group invariant subspaces; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 142; 10-2020; 76-100
Compartir
Altmétricas