Mostrar el registro sencillo del ítem
dc.contributor.author
Caiafa, César Federico

dc.contributor.author
Sporns, Olaf
dc.contributor.author
Saykin, Andy
dc.contributor.author
Pestilli, Franco
dc.date.available
2021-08-20T02:52:53Z
dc.date.issued
2017
dc.identifier.citation
Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays; 31st Conference on Neural Information Processing Systems; Long Beach; Estados Unidos; 2017; 1-11
dc.identifier.issn
1738-2572
dc.identifier.uri
http://hdl.handle.net/11336/138582
dc.description.abstract
Recently, linear formulations and convex optimization methods have been proposed to predict diffusion-weighted Magnetic Resonance Imaging (dMRI) data given estimates of brain connections generated using tractography algorithms. The size of the linear models comprising such methods grows with both dMRI data and connectome resolution, and can become very large when applied to modern data. In this paper, we introduce a method to encode dMRI signals and large connectomes, i.e., those that range from hundreds of thousands to millions of fascicles (bundles of neuronal axons), by using a sparse tensor decomposition. We show that this tensor decomposition accurately approximates the Linear Fascicle Evaluation (LiFE) model, one of the recently developed linear models. We provide a theoretical analysis of the accuracy of the sparse decomposed model, LiFE_SD, and demonstrate that it can reduce the size of the model significantly. Also, we develop algorithms to implement the optimization solver using the tensor representation in an efficient way.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Neural Information Processing Systems Foundation
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Multiway arrays
dc.subject
Diffusion Imaging
dc.subject
Tensor Decomposition
dc.subject
Tractography
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2021-07-01T16:55:47Z
dc.journal.number
30
dc.journal.pagination
1-11
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Long Beach
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados Unidos
dc.description.fil
Fil: Sporns, Olaf. Indiana University; Estados Unidos
dc.description.fil
Fil: Saykin, Andy. Indiana University; Estados Unidos
dc.description.fil
Fil: Pestilli, Franco. Indiana University; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://papers.nips.cc
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://par.nsf.gov/servlets/purl/10073354
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper/2017/hash/ccbd8ca962b80445df1f7f38c57759f0-Abstract.html
dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
31st Conference on Neural Information Processing Systems
dc.date.evento
2017-12-04
dc.description.ciudadEvento
Long Beach
dc.description.paisEvento
Estados Unidos

dc.type.publicacion
Journal
dc.description.institucionOrganizadora
National Science Foundation
dc.source.revista
Neural Information Processing
dc.date.eventoHasta
2017-12-09
dc.type
Conferencia
Archivos asociados