Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays

Caiafa, César FedericoIcon ; Sporns, Olaf; Saykin, Andy; Pestilli, Franco
Tipo del evento: Conferencia
Nombre del evento: 31st Conference on Neural Information Processing Systems
Fecha del evento: 04/12/2017
Institución Organizadora: National Science Foundation;
Título de la revista: Neural Information Processing
Editorial: Neural Information Processing Systems Foundation
ISSN: 1738-2572
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Recently, linear formulations and convex optimization methods have been proposed to predict diffusion-weighted Magnetic Resonance Imaging (dMRI) data given estimates of brain connections generated using tractography algorithms. The size of the linear models comprising such methods grows with both dMRI data and connectome resolution, and can become very large when applied to modern data. In this paper, we introduce a method to encode dMRI signals and large connectomes, i.e., those that range from hundreds of thousands to millions of fascicles (bundles of neuronal axons), by using a sparse tensor decomposition. We show that this tensor decomposition accurately approximates the Linear Fascicle Evaluation (LiFE) model, one of the recently developed linear models. We provide a theoretical analysis of the accuracy of the sparse decomposed model, LiFE_SD, and demonstrate that it can reduce the size of the model significantly. Also, we develop algorithms to implement the optimization solver using the tensor representation in an efficient way.
Palabras clave: Multiway arrays , Diffusion Imaging , Tensor Decomposition , Tractography
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.720Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138582
URL: https://papers.nips.cc
URL: https://par.nsf.gov/servlets/purl/10073354
URL: https://proceedings.neurips.cc/paper/2017/hash/ccbd8ca962b80445df1f7f38c57759f0-
Colecciones
Eventos(IAR)
Eventos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays; 31st Conference on Neural Information Processing Systems; Long Beach; Estados Unidos; 2017; 1-11
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES