Mostrar el registro sencillo del ítem
dc.contributor.author
Alviso, Dario
dc.contributor.author
Artana, Guillermo Osvaldo
dc.contributor.author
Duriez, Thomas Pierre Cornil
dc.date.available
2021-08-18T16:41:21Z
dc.date.issued
2020-03
dc.identifier.citation
Alviso, Dario; Artana, Guillermo Osvaldo; Duriez, Thomas Pierre Cornil; Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming; Elsevier; Fuel; 264; 116844; 3-2020; 1-12
dc.identifier.issn
0016-2361
dc.identifier.uri
http://hdl.handle.net/11336/138448
dc.description.abstract
This paper presents regression analysis of biodiesel physico-chemical properties as a function of fatty acid composition using an experimental database. The study is done by using 48 edible and non-edible oils-based biodiesel available data. Regression equations are presented as a function of fatty acid composition (saturated and unsaturated methyl esters). The physico-chemical properties studied are kinematic viscosity, flash point, cloud point, pour point (PP), cold filter plugging point, cetane (CN) and iodine numbers. The regression technique chosen to carry out this work is genetic programming (GP). Unlike multiple linear regression (MLR) strategies available in literature, GP provides generic, non-parametric regression among variables. For all properties analyzed, the performance of the regression is systematically better for GP than MLR. Indeed, the RSME related to the experimental database is lower for GP models, from ≈3% for CN to ≈55% for PP, in comparison to the best MLR model for each property. Particularly, most GP regression models reproduce correctly the dependence of properties on the saturated and unsaturated methyl esters.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIODIESEL
dc.subject
FATTY ACID
dc.subject
GENETIC PROGRAMMING
dc.subject
PROPERTIES
dc.subject
REGRESSION ANALYSIS
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-18T13:45:23Z
dc.journal.volume
264
dc.journal.number
116844
dc.journal.pagination
1-12
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Alviso, Dario. Universidad Nacional de Asunción; Paraguay. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
dc.description.fil
Fil: Duriez, Thomas Pierre Cornil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Universidad de la Marina Mercante; Argentina
dc.journal.title
Fuel
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.fuel.2019.116844
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0016236119321982
Archivos asociados