Mostrar el registro sencillo del ítem

dc.contributor.author
Alviso, Dario  
dc.contributor.author
Artana, Guillermo Osvaldo  
dc.contributor.author
Duriez, Thomas Pierre Cornil  
dc.date.available
2021-08-18T16:41:21Z  
dc.date.issued
2020-03  
dc.identifier.citation
Alviso, Dario; Artana, Guillermo Osvaldo; Duriez, Thomas Pierre Cornil; Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming; Elsevier; Fuel; 264; 116844; 3-2020; 1-12  
dc.identifier.issn
0016-2361  
dc.identifier.uri
http://hdl.handle.net/11336/138448  
dc.description.abstract
This paper presents regression analysis of biodiesel physico-chemical properties as a function of fatty acid composition using an experimental database. The study is done by using 48 edible and non-edible oils-based biodiesel available data. Regression equations are presented as a function of fatty acid composition (saturated and unsaturated methyl esters). The physico-chemical properties studied are kinematic viscosity, flash point, cloud point, pour point (PP), cold filter plugging point, cetane (CN) and iodine numbers. The regression technique chosen to carry out this work is genetic programming (GP). Unlike multiple linear regression (MLR) strategies available in literature, GP provides generic, non-parametric regression among variables. For all properties analyzed, the performance of the regression is systematically better for GP than MLR. Indeed, the RSME related to the experimental database is lower for GP models, from ≈3% for CN to ≈55% for PP, in comparison to the best MLR model for each property. Particularly, most GP regression models reproduce correctly the dependence of properties on the saturated and unsaturated methyl esters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIODIESEL  
dc.subject
FATTY ACID  
dc.subject
GENETIC PROGRAMMING  
dc.subject
PROPERTIES  
dc.subject
REGRESSION ANALYSIS  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-18T13:45:23Z  
dc.journal.volume
264  
dc.journal.number
116844  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Alviso, Dario. Universidad Nacional de Asunción; Paraguay. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina  
dc.description.fil
Fil: Duriez, Thomas Pierre Cornil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Universidad de la Marina Mercante; Argentina  
dc.journal.title
Fuel  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.fuel.2019.116844  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0016236119321982