Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming

Alviso, DarioIcon ; Artana, Guillermo OsvaldoIcon ; Duriez, Thomas Pierre CornilIcon
Fecha de publicación: 03/2020
Editorial: Elsevier
Revista: Fuel
ISSN: 0016-2361
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

This paper presents regression analysis of biodiesel physico-chemical properties as a function of fatty acid composition using an experimental database. The study is done by using 48 edible and non-edible oils-based biodiesel available data. Regression equations are presented as a function of fatty acid composition (saturated and unsaturated methyl esters). The physico-chemical properties studied are kinematic viscosity, flash point, cloud point, pour point (PP), cold filter plugging point, cetane (CN) and iodine numbers. The regression technique chosen to carry out this work is genetic programming (GP). Unlike multiple linear regression (MLR) strategies available in literature, GP provides generic, non-parametric regression among variables. For all properties analyzed, the performance of the regression is systematically better for GP than MLR. Indeed, the RSME related to the experimental database is lower for GP models, from ≈3% for CN to ≈55% for PP, in comparison to the best MLR model for each property. Particularly, most GP regression models reproduce correctly the dependence of properties on the saturated and unsaturated methyl esters.
Palabras clave: BIODIESEL , FATTY ACID , GENETIC PROGRAMMING , PROPERTIES , REGRESSION ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.355Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138448
DOI: http://dx.doi.org/10.1016/j.fuel.2019.116844
URL: https://www.sciencedirect.com/science/article/abs/pii/S0016236119321982
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Alviso, Dario; Artana, Guillermo Osvaldo; Duriez, Thomas Pierre Cornil; Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming; Elsevier; Fuel; 264; 116844; 3-2020; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES