Artículo
Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming
Fecha de publicación:
03/2020
Editorial:
Elsevier
Revista:
Fuel
ISSN:
0016-2361
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper presents regression analysis of biodiesel physico-chemical properties as a function of fatty acid composition using an experimental database. The study is done by using 48 edible and non-edible oils-based biodiesel available data. Regression equations are presented as a function of fatty acid composition (saturated and unsaturated methyl esters). The physico-chemical properties studied are kinematic viscosity, flash point, cloud point, pour point (PP), cold filter plugging point, cetane (CN) and iodine numbers. The regression technique chosen to carry out this work is genetic programming (GP). Unlike multiple linear regression (MLR) strategies available in literature, GP provides generic, non-parametric regression among variables. For all properties analyzed, the performance of the regression is systematically better for GP than MLR. Indeed, the RSME related to the experimental database is lower for GP models, from ≈3% for CN to ≈55% for PP, in comparison to the best MLR model for each property. Particularly, most GP regression models reproduce correctly the dependence of properties on the saturated and unsaturated methyl esters.
Palabras clave:
BIODIESEL
,
FATTY ACID
,
GENETIC PROGRAMMING
,
PROPERTIES
,
REGRESSION ANALYSIS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Alviso, Dario; Artana, Guillermo Osvaldo; Duriez, Thomas Pierre Cornil; Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming; Elsevier; Fuel; 264; 116844; 3-2020; 1-12
Compartir
Altmétricas