Mostrar el registro sencillo del ítem
dc.contributor.author
Gugnani, Shashank
dc.contributor.author
Lu, Xiaoyi
dc.contributor.author
Pestilli, Franco
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Panda, Dhabaleswar K.
dc.date.available
2021-08-06T16:45:00Z
dc.date.issued
2017
dc.identifier.citation
MPI-LiFE: Designing High-Performance Linear Fascicle Evaluation of Brain Connectome with MPI; IEEE 24th International Conference on High Performance Computing; Jaipur; India; 2017; 1-10
dc.identifier.isbn
978-1-5386-2293-3
dc.identifier.uri
http://hdl.handle.net/11336/137973
dc.description.abstract
In this paper, we combine high-performance com- puting science with computational neuroscience methods to show how to speed-up cutting edge methods for mapping and evaluation of the large-scale network of brain connections. More specifically, we use a recent factorization method of the Linear Fascicle Evaluation model (i.e., LiFE [1], [2]) that allows for statistical evaluation of brain connectomes. The method called ENCODE [3], [4] uses a Sparse Tucker Decomposition approach to represent the LiFE model. We show that we can implement the optimization step of the ENCODE method using MPI and OpenMP programming paradigms. Our approach involves the parallelization of the multiplication step of the ENCODE method. We model our design theoretically and demonstrate empirically that the design can be used to identify optimal configurations for the LiFE model optimization via ENCODE method on different hardware platforms. In addition, we co-design the MPI runtime with the LiFE model to achieve profound speed-ups. Extensive evaluation of our designs on multiple clusters corroborate our theoretical model. We show that on a single node on TACC Stampede2, we can achieve speed-ups of up to 8.7x as compared to the original approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Brain Connectome
dc.subject
MPI
dc.subject
Multiway Array
dc.subject
OpenMP
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
MPI-LiFE: Designing High-Performance Linear Fascicle Evaluation of Brain Connectome with MPI
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2021-07-01T16:55:45Z
dc.journal.pagination
1-10
dc.journal.pais
India
dc.journal.ciudad
Jaipur
dc.description.fil
Fil: Gugnani, Shashank. Ohio State University; Estados Unidos
dc.description.fil
Fil: Lu, Xiaoyi. Ohio State University; Estados Unidos
dc.description.fil
Fil: Pestilli, Franco. Indiana University; Estados Unidos
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Panda, Dhabaleswar K.. Ohio State University; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.computer.org/csdl/proceedings/hipc/2017/12OmNCwUmAk
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/HiPC.2017.00033
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8291854
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
IEEE 24th International Conference on High Performance Computing
dc.date.evento
2017-12-18
dc.description.ciudadEvento
Jaipur
dc.description.paisEvento
India
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
IEEE Conference Proceedings
dc.date.eventoHasta
2017-12-21
dc.type
Conferencia
Archivos asociados