Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

MPI-LiFE: Designing High-Performance Linear Fascicle Evaluation of Brain Connectome with MPI

Gugnani, Shashank; Lu, Xiaoyi; Pestilli, Franco; Caiafa, César FedericoIcon ; Panda, Dhabaleswar K.
Tipo del evento: Conferencia
Nombre del evento: IEEE 24th International Conference on High Performance Computing
Fecha del evento: 18/12/2017
Institución Organizadora: Institute of Electrical and Electronics Engineers;
Título del Libro: IEEE Conference Proceedings
Editorial: Institute of Electrical and Electronics Engineers
ISBN: 978-1-5386-2293-3
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper, we combine high-performance com- puting science with computational neuroscience methods to show how to speed-up cutting edge methods for mapping and evaluation of the large-scale network of brain connections. More specifically, we use a recent factorization method of the Linear Fascicle Evaluation model (i.e., LiFE [1], [2]) that allows for statistical evaluation of brain connectomes. The method called ENCODE [3], [4] uses a Sparse Tucker Decomposition approach to represent the LiFE model. We show that we can implement the optimization step of the ENCODE method using MPI and OpenMP programming paradigms. Our approach involves the parallelization of the multiplication step of the ENCODE method. We model our design theoretically and demonstrate empirically that the design can be used to identify optimal configurations for the LiFE model optimization via ENCODE method on different hardware platforms. In addition, we co-design the MPI runtime with the LiFE model to achieve profound speed-ups. Extensive evaluation of our designs on multiple clusters corroborate our theoretical model. We show that on a single node on TACC Stampede2, we can achieve speed-ups of up to 8.7x as compared to the original approach.
Palabras clave: Brain Connectome , MPI , Multiway Array , OpenMP
Ver el registro completo
 
Archivos asociados
Tamaño: 5.357Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137973
URL: https://www.computer.org/csdl/proceedings/hipc/2017/12OmNCwUmAk
DOI: http://dx.doi.org/10.1109/HiPC.2017.00033
URL: https://ieeexplore.ieee.org/document/8291854
Colecciones
Eventos(IAR)
Eventos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
MPI-LiFE: Designing High-Performance Linear Fascicle Evaluation of Brain Connectome with MPI; IEEE 24th International Conference on High Performance Computing; Jaipur; India; 2017; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES