Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The articles.ELM resource: Simplifying access to protein linear motif literature by annotation, text-mining and classification

Palopoli, NicolásIcon ; Iserte, Javier AlonsoIcon ; Chemes, Lucia BeatrizIcon ; Marino Buslje, Cristina; Parisi, Gustavo DanielIcon ; Gibson, Toby James; Davey, N.E.
Fecha de publicación: 01/2020
Editorial: Oxford University Press
Revista: Database
ISSN: 1758-0463
e-ISSN: 1758-0463
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field.
Palabras clave: LINEAR MOTIF , TEXT MINING , DATABASE , DISCOVERY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 783.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137873
URL: https://academic.oup.com/database/article/doi/10.1093/database/baaa040/5850858
DOI: http://dx.doi.org/10.1093/database/baaa040
URL: http://slim.icr.ac.uk/articles/
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Citación
Palopoli, Nicolás; Iserte, Javier Alonso; Chemes, Lucia Beatriz; Marino Buslje, Cristina; Parisi, Gustavo Daniel; et al.; The articles.ELM resource: Simplifying access to protein linear motif literature by annotation, text-mining and classification; Oxford University Press; Database; 2020; 1-2020; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES