Mostrar el registro sencillo del ítem

dc.contributor.author
Cornejo, Juan Manuel  
dc.contributor.author
Sankappanavar, Hanamantagouda P.  
dc.date.available
2021-08-04T23:22:14Z  
dc.date.issued
2019-06-30  
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-135  
dc.identifier.issn
0138-0680  
dc.identifier.uri
http://hdl.handle.net/11336/137819  
dc.description.abstract
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University of Lodz  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SEMI-HEYTING ALGEBRA  
dc.subject
HEYTING ALGEBRA  
dc.subject
IDENTITY OF ASSOCIATIVE TYPE  
dc.subject
SUBVARIETY OF ASSOCIATIVE TYPE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Semi-Heyting Algebras and Identities of Associative Type  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-21T16:51:50Z  
dc.journal.volume
48  
dc.journal.number
2  
dc.journal.pagination
117-135  
dc.journal.pais
Polonia  
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics; Estados Unidos  
dc.journal.title
Bulletin Of The Section Of Logic  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/5436  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18778/0138-0680.48.2.03