Mostrar el registro sencillo del ítem
dc.contributor.author
Cornejo, Juan Manuel
dc.contributor.author
Sankappanavar, Hanamantagouda P.
dc.date.available
2021-08-04T23:22:14Z
dc.date.issued
2019-06-30
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-135
dc.identifier.issn
0138-0680
dc.identifier.uri
http://hdl.handle.net/11336/137819
dc.description.abstract
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
University of Lodz
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SEMI-HEYTING ALGEBRA
dc.subject
HEYTING ALGEBRA
dc.subject
IDENTITY OF ASSOCIATIVE TYPE
dc.subject
SUBVARIETY OF ASSOCIATIVE TYPE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Semi-Heyting Algebras and Identities of Associative Type
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-21T16:51:50Z
dc.journal.volume
48
dc.journal.number
2
dc.journal.pagination
117-135
dc.journal.pais
Polonia
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics; Estados Unidos
dc.journal.title
Bulletin Of The Section Of Logic
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/5436
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18778/0138-0680.48.2.03
Archivos asociados