Artículo
Semi-Heyting Algebras and Identities of Associative Type
Fecha de publicación:
30/06/2019
Editorial:
University of Lodz
Revista:
Bulletin Of The Section Of Logic
ISSN:
0138-0680
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-135
Compartir
Altmétricas