Mostrar el registro sencillo del ítem

dc.contributor.author
Contino, Maximiliano  
dc.contributor.author
Dritschel, Michael A.  
dc.contributor.author
Maestripieri, Alejandra Laura  
dc.contributor.author
Marcantognini Palacios, Stefania Alma María  
dc.date.available
2021-08-04T18:55:32Z  
dc.date.issued
2021-02-22  
dc.identifier.citation
Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33  
dc.identifier.issn
1661-8254  
dc.identifier.uri
http://hdl.handle.net/11336/137793  
dc.description.abstract
On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PRODUCTS OF POSITIVE OPERATORS  
dc.subject
SCHUR COMPLEMENTS  
dc.subject
QUASI-SIMILARITY  
dc.subject
QUASI-AFFINITY  
dc.subject
LOCAL SPECTRAL THEORY  
dc.subject
GENERALIZED SCALAR OPERATORS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Products of Positive Operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-30T19:14:47Z  
dc.journal.volume
15  
dc.journal.number
2  
dc.journal.pagination
1-33  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Dritschel, Michael A.. University of Newcastle; Reino Unido  
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina  
dc.journal.title
Complex Analysis and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01083-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11785-021-01083-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2007.00680