Mostrar el registro sencillo del ítem
dc.contributor.author
Contino, Maximiliano
dc.contributor.author
Dritschel, Michael A.
dc.contributor.author
Maestripieri, Alejandra Laura
dc.contributor.author
Marcantognini Palacios, Stefania Alma María
dc.date.available
2021-08-04T18:55:32Z
dc.date.issued
2021-02-22
dc.identifier.citation
Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33
dc.identifier.issn
1661-8254
dc.identifier.uri
http://hdl.handle.net/11336/137793
dc.description.abstract
On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PRODUCTS OF POSITIVE OPERATORS
dc.subject
SCHUR COMPLEMENTS
dc.subject
QUASI-SIMILARITY
dc.subject
QUASI-AFFINITY
dc.subject
LOCAL SPECTRAL THEORY
dc.subject
GENERALIZED SCALAR OPERATORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Products of Positive Operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-30T19:14:47Z
dc.journal.volume
15
dc.journal.number
2
dc.journal.pagination
1-33
dc.journal.pais
Suiza
dc.description.fil
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Dritschel, Michael A.. University of Newcastle; Reino Unido
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.journal.title
Complex Analysis and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01083-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11785-021-01083-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2007.00680
Archivos asociados