Artículo
Products of Positive Operators
Contino, Maximiliano
; Dritschel, Michael A.; Maestripieri, Alejandra Laura
; Marcantognini Palacios, Stefania Alma María
Fecha de publicación:
22/02/2021
Editorial:
Birkhauser Verlag Ag
Revista:
Complex Analysis and Operator Theory
ISSN:
1661-8254
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33
Compartir
Altmétricas