Mostrar el registro sencillo del ítem
dc.contributor.author
Duan, Feng
dc.contributor.author
Jia, Hao
dc.contributor.author
Zhang, Zhiwen
dc.contributor.author
Feng, Fan
dc.contributor.author
Tan, Ying
dc.contributor.author
Dai, Yang Yang
dc.contributor.author
Cichocki, Andrzej
dc.contributor.author
Zhenglu, Yang
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Zhe, Sun
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2021-08-02T14:34:35Z
dc.date.issued
2021-04
dc.identifier.citation
Duan, Feng; Jia, Hao; Zhang, Zhiwen; Feng, Fan; Tan, Ying; et al.; On the robustness of EEG tensor completion methods; Springer Verlag Berlín; Science China Technological Sciences; 64; 4-2021; 1-29
dc.identifier.uri
http://hdl.handle.net/11336/137569
dc.description.abstract
During the acquisition of electroencephalographic (EEG) signals, data may be missing or corrupted by noise and artifacts. To reconstruct the incomplete data, EEG signals are firstly converted into a three-order tensor (multi-dimensional data) of shape time × channel × trial. Then, the missing data can be efficiently recovered by applying a tensor completion method (TCM). However, there is not a unique way to organize channels and trials in a tensor, and different numbers of channels are available depending on the EEG setting used, which may affect the quality of the tensor completion results. The main goal of this paper is to evaluate the robustness of EEG completion methods with several designed parameters such as the ordering of channels and trials, the number of channels, and the amount of missing data. In this work, the results of completing missing data by several TCMs were compared. To emulate different scenarios of missing data, three different patterns of missing data were designed. Firstly, the amount of missing data on completion effects was analyzed, including the time lengths of missing data and the number of channels or trials affected by missing data. Secondly, the numerical stability of the completion methods was analyzed by shuffling the indices along channels or trials in the EEG data tensor. Finally, the way that the number of electrodes of EEG tensors influences completion effects was assessed by changing the number of channels. Among all the applied TCMs, the simultaneous tensor decomposition and completion (STDC) method achieves the best performance in providing stable results when the amount of missing data or the electrode number of EEG tensors is changed. In other words, STDC proves to be an excellent choice of TCM, since permutations of trials or channels have almost no influence on the complete results. The STDC method can efficiently complete the missing EEG signals. The designed simulations can be regarded as a procedure to validate whether or not a completion method is useful enough to complete EEG signals.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EEG
dc.subject
Tensor completion
dc.subject
BCI
dc.subject
tensor decomposition
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the robustness of EEG tensor completion methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-06-10T19:28:09Z
dc.identifier.eissn
1869-1900
dc.journal.volume
64
dc.journal.pagination
1-29
dc.journal.pais
China
dc.journal.ciudad
Beijin
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Jia, Hao. Nankai University; China
dc.description.fil
Fil: Zhang, Zhiwen. Nankai University; China
dc.description.fil
Fil: Feng, Fan. Nankai University; China
dc.description.fil
Fil: Tan, Ying. Nankai University; China
dc.description.fil
Fil: Dai, Yang Yang. Nankai University; China
dc.description.fil
Fil: Cichocki, Andrzej. Skolkowo Institute of Science and Technology; Rusia. Hangzhou Dianzi University; China. Polish Academy of Sciences; Polonia. Nicolaus Copernicus University; Polonia
dc.description.fil
Fil: Zhenglu, Yang. Nankai University; China
dc.description.fil
Fil: Caiafa, César Federico. Nankai University; China. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Zhe, Sun. Nankai University; China. Riken. Information Systems and Cybersecurity; Japón
dc.description.fil
Fil: Solé Casals, Jordi. Nankai University; China. University of Cambridge; Estados Unidos. Universidad Central de Cataluña; España
dc.journal.title
Science China Technological Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciengine.com/publisher/scp/journal/SCTS/doi/10.1007/s11431-020-1839-5?slug=fulltext
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11431-020-1839-5
Archivos asociados