Mostrar el registro sencillo del ítem

dc.contributor.author
Duan, Feng  
dc.contributor.author
Jia, Hao  
dc.contributor.author
Zhang, Zhiwen  
dc.contributor.author
Feng, Fan  
dc.contributor.author
Tan, Ying  
dc.contributor.author
Dai, Yang Yang  
dc.contributor.author
Cichocki, Andrzej  
dc.contributor.author
Zhenglu, Yang  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Zhe, Sun  
dc.contributor.author
Solé Casals, Jordi  
dc.date.available
2021-08-02T14:34:35Z  
dc.date.issued
2021-04  
dc.identifier.citation
Duan, Feng; Jia, Hao; Zhang, Zhiwen; Feng, Fan; Tan, Ying; et al.; On the robustness of EEG tensor completion methods; Springer Verlag Berlín; Science China Technological Sciences; 64; 4-2021; 1-29  
dc.identifier.uri
http://hdl.handle.net/11336/137569  
dc.description.abstract
During the acquisition of electroencephalographic (EEG) signals, data may be missing or corrupted by noise and artifacts. To reconstruct the incomplete data, EEG signals are firstly converted into a three-order tensor (multi-dimensional data) of shape time × channel × trial. Then, the missing data can be efficiently recovered by applying a tensor completion method (TCM). However, there is not a unique way to organize channels and trials in a tensor, and different numbers of channels are available depending on the EEG setting used, which may affect the quality of the tensor completion results. The main goal of this paper is to evaluate the robustness of EEG completion methods with several designed parameters such as the ordering of channels and trials, the number of channels, and the amount of missing data. In this work, the results of completing missing data by several TCMs were compared. To emulate different scenarios of missing data, three different patterns of missing data were designed. Firstly, the amount of missing data on completion effects was analyzed, including the time lengths of missing data and the number of channels or trials affected by missing data. Secondly, the numerical stability of the completion methods was analyzed by shuffling the indices along channels or trials in the EEG data tensor. Finally, the way that the number of electrodes of EEG tensors influences completion effects was assessed by changing the number of channels. Among all the applied TCMs, the simultaneous tensor decomposition and completion (STDC) method achieves the best performance in providing stable results when the amount of missing data or the electrode number of EEG tensors is changed. In other words, STDC proves to be an excellent choice of TCM, since permutations of trials or channels have almost no influence on the complete results. The STDC method can efficiently complete the missing EEG signals. The designed simulations can be regarded as a procedure to validate whether or not a completion method is useful enough to complete EEG signals.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EEG  
dc.subject
Tensor completion  
dc.subject
BCI  
dc.subject
tensor decomposition  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the robustness of EEG tensor completion methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-10T19:28:09Z  
dc.identifier.eissn
1869-1900  
dc.journal.volume
64  
dc.journal.pagination
1-29  
dc.journal.pais
China  
dc.journal.ciudad
Beijin  
dc.description.fil
Fil: Duan, Feng. Nankai University; China  
dc.description.fil
Fil: Jia, Hao. Nankai University; China  
dc.description.fil
Fil: Zhang, Zhiwen. Nankai University; China  
dc.description.fil
Fil: Feng, Fan. Nankai University; China  
dc.description.fil
Fil: Tan, Ying. Nankai University; China  
dc.description.fil
Fil: Dai, Yang Yang. Nankai University; China  
dc.description.fil
Fil: Cichocki, Andrzej. Skolkowo Institute of Science and Technology; Rusia. Hangzhou Dianzi University; China. Polish Academy of Sciences; Polonia. Nicolaus Copernicus University; Polonia  
dc.description.fil
Fil: Zhenglu, Yang. Nankai University; China  
dc.description.fil
Fil: Caiafa, César Federico. Nankai University; China. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Zhe, Sun. Nankai University; China. Riken. Information Systems and Cybersecurity; Japón  
dc.description.fil
Fil: Solé Casals, Jordi. Nankai University; China. University of Cambridge; Estados Unidos. Universidad Central de Cataluña; España  
dc.journal.title
Science China Technological Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciengine.com/publisher/scp/journal/SCTS/doi/10.1007/s11431-020-1839-5?slug=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11431-020-1839-5