Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the robustness of EEG tensor completion methods

Duan, Feng; Jia, Hao; Zhang, Zhiwen; Feng, Fan; Tan, Ying; Dai, Yang Yang; Cichocki, Andrzej; Zhenglu, Yang; Caiafa, César FedericoIcon ; Zhe, Sun; Solé Casals, Jordi
Fecha de publicación: 04/2021
Editorial: Springer Verlag Berlín
Revista: Science China Technological Sciences
e-ISSN: 1869-1900
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

During the acquisition of electroencephalographic (EEG) signals, data may be missing or corrupted by noise and artifacts. To reconstruct the incomplete data, EEG signals are firstly converted into a three-order tensor (multi-dimensional data) of shape time × channel × trial. Then, the missing data can be efficiently recovered by applying a tensor completion method (TCM). However, there is not a unique way to organize channels and trials in a tensor, and different numbers of channels are available depending on the EEG setting used, which may affect the quality of the tensor completion results. The main goal of this paper is to evaluate the robustness of EEG completion methods with several designed parameters such as the ordering of channels and trials, the number of channels, and the amount of missing data. In this work, the results of completing missing data by several TCMs were compared. To emulate different scenarios of missing data, three different patterns of missing data were designed. Firstly, the amount of missing data on completion effects was analyzed, including the time lengths of missing data and the number of channels or trials affected by missing data. Secondly, the numerical stability of the completion methods was analyzed by shuffling the indices along channels or trials in the EEG data tensor. Finally, the way that the number of electrodes of EEG tensors influences completion effects was assessed by changing the number of channels. Among all the applied TCMs, the simultaneous tensor decomposition and completion (STDC) method achieves the best performance in providing stable results when the amount of missing data or the electrode number of EEG tensors is changed. In other words, STDC proves to be an excellent choice of TCM, since permutations of trials or channels have almost no influence on the complete results. The STDC method can efficiently complete the missing EEG signals. The designed simulations can be regarded as a procedure to validate whether or not a completion method is useful enough to complete EEG signals.
Palabras clave: EEG , Tensor completion , BCI , tensor decomposition
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.458Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137569
URL: https://www.sciengine.com/publisher/scp/journal/SCTS/doi/10.1007/s11431-020-1839
DOI: http://dx.doi.org/10.1007/s11431-020-1839-5
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Duan, Feng; Jia, Hao; Zhang, Zhiwen; Feng, Fan; Tan, Ying; et al.; On the robustness of EEG tensor completion methods; Springer Verlag Berlín; Science China Technological Sciences; 64; 4-2021; 1-29
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES