Mostrar el registro sencillo del ítem

dc.contributor.author
Zhang, Kewei  
dc.contributor.author
Orlando, Antonio  
dc.contributor.author
Crooks, Elaine  
dc.date.available
2021-08-02T14:34:04Z  
dc.date.issued
2021-06  
dc.identifier.citation
Zhang, Kewei; Orlando, Antonio; Crooks, Elaine; Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods; Elsevier Science Inc.; Applied Mathematical Modelling; 94; 6-2021; 688-720  
dc.identifier.issn
0307-904X  
dc.identifier.uri
http://hdl.handle.net/11336/137568  
dc.description.abstract
Compensated convex transforms have been introduced for extended real valued functions defined over Rn. In their application to image processing, interpolation and shape interrogation, where one deals with functions defined over a bounded domain, the implicit assumption was made that the function coincides with its transform at the boundary of the data domain. In this paper, we introduce local compensated convex transforms for functions defined in bounded open convex subsets Ω of Rn by making specific extensions of the function to the whole space, and establish their relations to globally defined compensated convex transforms via the mixed critical Moreau envelopes. We find that the compensated convex transforms of such extensions coincide with the local compensated convex transforms in the closure of Ω. We also propose a numerical scheme for computing Moreau envelopes, establishing convergence of the scheme with the rate of convergence depending on the regularity of the original function. We give an estimate of the number of iterations needed for computing the discrete Moreau envelope. We then apply the local compensated convex transforms to image processing and shape interrogation. Our results are compared with those obtained by using schemes based on computing the convex envelope from the original definition of compensated convex transforms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPENSATED CONVEX TRANSFORMS  
dc.subject
COMPUTATION OF MOREAU ENVELOPES  
dc.subject
MOREAU ENVELOPES  
dc.subject
PROXIMITY HULL  
dc.subject
SCATTERED DATA APPROXIMATION  
dc.subject
SHAPE INTERROGATION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-26T15:14:26Z  
dc.journal.volume
94  
dc.journal.pagination
688-720  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Zhang, Kewei. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos  
dc.description.fil
Fil: Orlando, Antonio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina  
dc.description.fil
Fil: Crooks, Elaine. Swansea University; Reino Unido  
dc.journal.title
Applied Mathematical Modelling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apm.2021.01.040  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0307904X21000573?via%3Dihub