Mostrar el registro sencillo del ítem
dc.contributor.author
Zhang, Kewei
dc.contributor.author
Orlando, Antonio
dc.contributor.author
Crooks, Elaine
dc.date.available
2021-08-02T14:34:04Z
dc.date.issued
2021-06
dc.identifier.citation
Zhang, Kewei; Orlando, Antonio; Crooks, Elaine; Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods; Elsevier Science Inc.; Applied Mathematical Modelling; 94; 6-2021; 688-720
dc.identifier.issn
0307-904X
dc.identifier.uri
http://hdl.handle.net/11336/137568
dc.description.abstract
Compensated convex transforms have been introduced for extended real valued functions defined over Rn. In their application to image processing, interpolation and shape interrogation, where one deals with functions defined over a bounded domain, the implicit assumption was made that the function coincides with its transform at the boundary of the data domain. In this paper, we introduce local compensated convex transforms for functions defined in bounded open convex subsets Ω of Rn by making specific extensions of the function to the whole space, and establish their relations to globally defined compensated convex transforms via the mixed critical Moreau envelopes. We find that the compensated convex transforms of such extensions coincide with the local compensated convex transforms in the closure of Ω. We also propose a numerical scheme for computing Moreau envelopes, establishing convergence of the scheme with the rate of convergence depending on the regularity of the original function. We give an estimate of the number of iterations needed for computing the discrete Moreau envelope. We then apply the local compensated convex transforms to image processing and shape interrogation. Our results are compared with those obtained by using schemes based on computing the convex envelope from the original definition of compensated convex transforms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMPENSATED CONVEX TRANSFORMS
dc.subject
COMPUTATION OF MOREAU ENVELOPES
dc.subject
MOREAU ENVELOPES
dc.subject
PROXIMITY HULL
dc.subject
SCATTERED DATA APPROXIMATION
dc.subject
SHAPE INTERROGATION
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-26T15:14:26Z
dc.journal.volume
94
dc.journal.pagination
688-720
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Zhang, Kewei. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
dc.description.fil
Fil: Orlando, Antonio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.description.fil
Fil: Crooks, Elaine. Swansea University; Reino Unido
dc.journal.title
Applied Mathematical Modelling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apm.2021.01.040
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0307904X21000573?via%3Dihub
Archivos asociados