Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods

Zhang, Kewei; Orlando, AntonioIcon ; Crooks, Elaine
Fecha de publicación: 06/2021
Editorial: Elsevier Science Inc.
Revista: Applied Mathematical Modelling
ISSN: 0307-904X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Otras Ingenierías y Tecnologías

Resumen

Compensated convex transforms have been introduced for extended real valued functions defined over Rn. In their application to image processing, interpolation and shape interrogation, where one deals with functions defined over a bounded domain, the implicit assumption was made that the function coincides with its transform at the boundary of the data domain. In this paper, we introduce local compensated convex transforms for functions defined in bounded open convex subsets Ω of Rn by making specific extensions of the function to the whole space, and establish their relations to globally defined compensated convex transforms via the mixed critical Moreau envelopes. We find that the compensated convex transforms of such extensions coincide with the local compensated convex transforms in the closure of Ω. We also propose a numerical scheme for computing Moreau envelopes, establishing convergence of the scheme with the rate of convergence depending on the regularity of the original function. We give an estimate of the number of iterations needed for computing the discrete Moreau envelope. We then apply the local compensated convex transforms to image processing and shape interrogation. Our results are compared with those obtained by using schemes based on computing the convex envelope from the original definition of compensated convex transforms.
Palabras clave: COMPENSATED CONVEX TRANSFORMS , COMPUTATION OF MOREAU ENVELOPES , MOREAU ENVELOPES , PROXIMITY HULL , SCATTERED DATA APPROXIMATION , SHAPE INTERROGATION
Ver el registro completo
 
Archivos asociados
Tamaño: 3.203Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137568
DOI: http://dx.doi.org/10.1016/j.apm.2021.01.040
URL: https://www.sciencedirect.com/science/article/abs/pii/S0307904X21000573?via%3Dih
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Zhang, Kewei; Orlando, Antonio; Crooks, Elaine; Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods; Elsevier Science Inc.; Applied Mathematical Modelling; 94; 6-2021; 688-720
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES