Mostrar el registro sencillo del ítem
dc.contributor.author
Orozco, Carlos Ismael
dc.contributor.author
Xamena, Eduardo
dc.contributor.author
Martinez, Cristian Alejandro
dc.contributor.author
Rodriguez, Diego Alejandro
dc.date.available
2021-07-26T20:05:29Z
dc.date.issued
2021-06-08
dc.identifier.citation
Orozco, Carlos Ismael; Xamena, Eduardo; Martinez, Cristian Alejandro; Rodriguez, Diego Alejandro; COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 8-6-2021; 1-8
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/137000
dc.description.abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Its symptoms are similar to those of the common flu, including fever, cough, dyspnea, myalgia, and fatigue. Due to its rapid expansion globally, the World Health Organization (OMS) declared it a pandemic. The molecular test commonly used worldwide for direct detection of the virus is the RT-PCR test but it takes time to process and the materials used are scarce. In this work we propose: (a) The design and implementation of a deep neural network architecture for the detection of patients with COVID-19 using as input X-ray images of the chest; the architecture is made up of a feature extraction phase, that is, a pre-trained model VGG16 extracts the features of the image; then in the second phase, a multilayer neural network classifies into one of two particular classes (1: COVID, 0: NO COVID). (b) The implementation of a Web platform that allows interested people to use our architecture in a clear, simple and transparent way. The deep learning algorithm was implemented in Python with specific libraries for the design of neural networks, while the Web platform was implemented in PHP using the Laravel framework and MySQL database. We evaluate the performance of our proposal using the sensitivity, specificity and area under the curve (AUC) evaluation metrics, obtaining good results in very short computational times.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
X-RAY TEST
dc.subject
WEB PLATFORM
dc.subject
COVID-19
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-26T13:59:44Z
dc.journal.volume
19
dc.journal.number
6
dc.journal.pagination
1-8
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Orozco, Carlos Ismael. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina
dc.description.fil
Fil: Xamena, Eduardo. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Martinez, Cristian Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina
dc.description.fil
Fil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
IEEE Latin America Transactions
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/4402
Archivos asociados