Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images

Orozco, Carlos Ismael; Xamena, EduardoIcon ; Martinez, Cristian Alejandro; Rodriguez, Diego AlejandroIcon
Fecha de publicación: 08/06/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Its symptoms are similar to those of the common flu, including fever, cough, dyspnea, myalgia, and fatigue. Due to its rapid expansion globally, the World Health Organization (OMS) declared it a pandemic. The molecular test commonly used worldwide for direct detection of the virus is the RT-PCR test but it takes time to process and the materials used are scarce. In this work we propose: (a) The design and implementation of a deep neural network architecture for the detection of patients with COVID-19 using as input X-ray images of the chest; the architecture is made up of a feature extraction phase, that is, a pre-trained model VGG16 extracts the features of the image; then in the second phase, a multilayer neural network classifies into one of two particular classes (1: COVID, 0: NO COVID). (b) The implementation of a Web platform that allows interested people to use our architecture in a clear, simple and transparent way. The deep learning algorithm was implemented in Python with specific libraries for the design of neural networks, while the Web platform was implemented in PHP using the Laravel framework and MySQL database. We evaluate the performance of our proposal using the sensitivity, specificity and area under the curve (AUC) evaluation metrics, obtaining good results in very short computational times.
Palabras clave: DEEP LEARNING , X-RAY TEST , WEB PLATFORM , COVID-19
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.171Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137000
URL: https://latamt.ieeer9.org/index.php/transactions/article/view/4402
Colecciones
Articulos(ICSOH)
Articulos de INST.DE INVEST. EN CS. SOC. Y HUMANIDADES
Citación
Orozco, Carlos Ismael; Xamena, Eduardo; Martinez, Cristian Alejandro; Rodriguez, Diego Alejandro; COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 8-6-2021; 1-8
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES