Mostrar el registro sencillo del ítem

dc.contributor.author
Kopanos, Georgio M.  
dc.contributor.author
Mendez, Carlos Alberto  
dc.contributor.author
Puigjaner, Luis  
dc.date.available
2017-03-09T20:04:43Z  
dc.date.issued
2010-12  
dc.identifier.citation
Kopanos, Georgio M.; Mendez, Carlos Alberto; Puigjaner, Luis; MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry; Elsevier Science; European Journal Of Operational Research; 207; 2; 12-2010; 644-655  
dc.identifier.issn
0377-2217  
dc.identifier.uri
http://hdl.handle.net/11336/13696  
dc.description.abstract
An efficient systematic iterative solution strategy for solving real-world scheduling problems in multiproduct multistage batch plants is presented. Since the proposed method has its core a mathematical model, two alternative MIP scheduling formulations are suggested. The MIP-based solution strategy consists of a constructive step, wherein a feasible and initial solution is rapidly generated by following an iterative insertion procedure, and an improvement step, wherein the initial solution is systematically enhanced by implementing iteratively several rescheduling techniques, based on the mathematical model. A salient feature of our approach is that the scheduler can maintain the number of decisions at a reasonable level thus reducing appropriately the search space. A fact that usually results in manageable model sizes that often guarantees a more stable and predictable optimization model behavior. The proposed strategy performance is tested on several complicated problem instances of a multiproduct multistage pharmaceuticals scheduling problem. On average, high quality solutions are reported with relatively low computational effort. Authors encourage other researchers to adopt the large-scale pharmaceutical scheduling problem to test on it their solution techniques, and use it as a challenging comparison reference  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Scheduling  
dc.subject
Large Scale Optimization  
dc.subject
Mixed Integer Programming  
dc.subject
Decomposition Strategy  
dc.subject
Pharmaceutical Industry  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-24T19:30:19Z  
dc.journal.volume
207  
dc.journal.number
2  
dc.journal.pagination
644-655  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Kopanos, Georgio M.. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Puigjaner, Luis. Universidad Politecnica de Catalunya; España  
dc.journal.title
European Journal Of Operational Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ejor.2010.06.002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037722171000408X