Mostrar el registro sencillo del ítem
dc.contributor.author
Kopanos, Georgio M.
dc.contributor.author
Mendez, Carlos Alberto
dc.contributor.author
Puigjaner, Luis
dc.date.available
2017-03-09T20:04:43Z
dc.date.issued
2010-12
dc.identifier.citation
Kopanos, Georgio M.; Mendez, Carlos Alberto; Puigjaner, Luis; MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry; Elsevier Science; European Journal Of Operational Research; 207; 2; 12-2010; 644-655
dc.identifier.issn
0377-2217
dc.identifier.uri
http://hdl.handle.net/11336/13696
dc.description.abstract
An efficient systematic iterative solution strategy for solving real-world scheduling problems in multiproduct multistage batch plants is presented. Since the proposed method has its core a mathematical model, two alternative MIP scheduling formulations are suggested. The MIP-based solution strategy consists of a constructive step, wherein a feasible and initial solution is rapidly generated by following an iterative insertion procedure, and an improvement step, wherein the initial solution is systematically enhanced by implementing iteratively several rescheduling techniques, based on the mathematical model. A salient feature of our approach is that the scheduler can maintain the number of decisions at a reasonable level thus reducing appropriately the search space. A fact that usually results in manageable model sizes that often guarantees a more stable and predictable optimization model behavior. The proposed strategy performance is tested on several complicated problem instances of a multiproduct multistage pharmaceuticals scheduling problem. On average, high quality solutions are reported with relatively low computational effort. Authors encourage other researchers to adopt the large-scale pharmaceutical scheduling problem to test on it their solution techniques, and use it as a challenging comparison reference
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Scheduling
dc.subject
Large Scale Optimization
dc.subject
Mixed Integer Programming
dc.subject
Decomposition Strategy
dc.subject
Pharmaceutical Industry
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-02-24T19:30:19Z
dc.journal.volume
207
dc.journal.number
2
dc.journal.pagination
644-655
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Kopanos, Georgio M.. Universidad Politecnica de Catalunya; España
dc.description.fil
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Puigjaner, Luis. Universidad Politecnica de Catalunya; España
dc.journal.title
European Journal Of Operational Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ejor.2010.06.002
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037722171000408X
Archivos asociados