Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry

Kopanos, Georgio M.; Mendez, Carlos AlbertoIcon ; Puigjaner, Luis
Fecha de publicación: 12/2010
Editorial: Elsevier Science
Revista: European Journal Of Operational Research
ISSN: 0377-2217
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

An efficient systematic iterative solution strategy for solving real-world scheduling problems in multiproduct multistage batch plants is presented. Since the proposed method has its core a mathematical model, two alternative MIP scheduling formulations are suggested. The MIP-based solution strategy consists of a constructive step, wherein a feasible and initial solution is rapidly generated by following an iterative insertion procedure, and an improvement step, wherein the initial solution is systematically enhanced by implementing iteratively several rescheduling techniques, based on the mathematical model. A salient feature of our approach is that the scheduler can maintain the number of decisions at a reasonable level thus reducing appropriately the search space. A fact that usually results in manageable model sizes that often guarantees a more stable and predictable optimization model behavior. The proposed strategy performance is tested on several complicated problem instances of a multiproduct multistage pharmaceuticals scheduling problem. On average, high quality solutions are reported with relatively low computational effort. Authors encourage other researchers to adopt the large-scale pharmaceutical scheduling problem to test on it their solution techniques, and use it as a challenging comparison reference
Palabras clave: Scheduling , Large Scale Optimization , Mixed Integer Programming , Decomposition Strategy , Pharmaceutical Industry
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.940Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/13696
DOI: http://dx.doi.org/10.1016/j.ejor.2010.06.002
URL: http://www.sciencedirect.com/science/article/pii/S037722171000408X
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Kopanos, Georgio M.; Mendez, Carlos Alberto; Puigjaner, Luis; MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry; Elsevier Science; European Journal Of Operational Research; 207; 2; 12-2010; 644-655
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES