Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Positive predictive value surfaces as a complementary tool to assess the performance of virtual screening methods

Morales, Juan FranciscoIcon ; Chuguransky, Sara RocíoIcon ; Alberca, Lucas NicolásIcon ; Alice, Juan IgnacioIcon ; Goicoechea, SofiaIcon ; Ruiz, María EsperanzaIcon ; Bellera, Carolina LeticiaIcon ; Talevi, AlanIcon
Fecha de publicación: 05/2020
Editorial: Bentham Science Publishers
Revista: Mini-reviews In Medicinal Chemistry
ISSN: 1389-5575
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Background: Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification prob-lems, the ratio between sensitivity and specificity for a given score value is very informative, a practi-cal concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value-PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori. Objective: To explore the use of PPV surfaces derived from simulated ranking experiments (retrospec-tive virtual screening) as a complementary tool to ROC curves, for both benchmarking and optimization of score cutoff values. Methods: The utility of the proposed approach is assessed in retrospective virtual screening experiments with four datasets used to infer QSAR classifiers: inhibitors of Trypanosoma cruzi trypanothi-one synthetase; inhibitors of Trypanosoma brucei N-myristoyltransferase; inhibitors of GABA trans-aminase and anticonvulsant activity in the 6 Hz seizure model. Results: Besides illustrating the utility of PPV surfaces to compare the performance of machine learning models for virtual screening applications and to select an adequate score threshold, our results also suggest that ensemble learning provides models with better predictivity and more robust behavior. Conclusion: PPV surfaces are valuable tools to assess virtual screening tools and choose score thresh-olds to be applied in prospective in silico screens. Ensemble learning approaches seem to consistently lead to improved predictivity and robustness.
Palabras clave: BENCHMARKING , ENRICHMENT , ENSEMBLE LEARNING , POSITIVE PREDICTIVE VALUE , RETROSPECTIVE SCREEN , VIRTUAL SCREENING
Ver el registro completo
 
Archivos asociados
Tamaño: 271.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/136401
URL: http://www.eurekaselect.com/180583/article
DOI: http://dx.doi.org/10.2174/1871525718666200219130229
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Morales, Juan Francisco; Chuguransky, Sara Rocío; Alberca, Lucas Nicolás; Alice, Juan Ignacio; Goicoechea, Sofia; et al.; Positive predictive value surfaces as a complementary tool to assess the performance of virtual screening methods; Bentham Science Publishers; Mini-reviews In Medicinal Chemistry; 20; 14; 5-2020; 1447-1460
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES