Mostrar el registro sencillo del ítem
dc.contributor.author
de Borbón, María Laura
dc.contributor.author
Ochoa, Pablo Daniel
dc.date.available
2021-07-14T12:46:14Z
dc.date.issued
2020-09
dc.identifier.citation
de Borbón, María Laura; Ochoa, Pablo Daniel; A Capacity-Based Condition for Existence of Solutions to Fractional Elliptic Equations with First-Order Terms and Measures; Springer; Potential Analysis; 9-2020; 1-24
dc.identifier.issn
0926-2601
dc.identifier.uri
http://hdl.handle.net/11336/136071
dc.description.abstract
In this manuscript, we appeal to Potential Theory to provide a sufficient condition for existence of distributional solutions to fractional elliptic problems with non-linear first-order terms and measure data ω:{(−Δ)su=|∇u|q+ωinℝn,s∈(1/2,1)u>0inℝnlim|x|→∞u(x)=0,under suitable assumptions on q and ω. Roughly speaking, the condition for existence states that if the measure data is locally controlled by the Riesz fractional capacity, then there is a global solution for the Problem (1). We also show that if a positive solution exists, necessarily the measure ω will be absolutely continuous with respect to the associated Riesz capacity, which gives a partial reciprocal of the main result of this work. Finally, estimates of u in terms of ω are also given in different function spaces.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FRACTIONAL LAPLACIAN
dc.subject
NON-LINEAR GRADIENT TERMS
dc.subject
PDE’S WITH MEASURES
dc.subject
POTENTIALS AND CAPACITY
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Capacity-Based Condition for Existence of Solutions to Fractional Elliptic Equations with First-Order Terms and Measures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-06-07T15:31:03Z
dc.journal.pagination
1-24
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: de Borbón, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas. Centro de Investigación Cuyo; Argentina
dc.description.fil
Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas. Centro de Investigación Cuyo; Argentina
dc.journal.title
Potential Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11118-020-09873-1
Archivos asociados