Artículo
A Capacity-Based Condition for Existence of Solutions to Fractional Elliptic Equations with First-Order Terms and Measures
Fecha de publicación:
09/2020
Editorial:
Springer
Revista:
Potential Analysis
ISSN:
0926-2601
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this manuscript, we appeal to Potential Theory to provide a sufficient condition for existence of distributional solutions to fractional elliptic problems with non-linear first-order terms and measure data ω:{(−Δ)su=|∇u|q+ωinℝn,s∈(1/2,1)u>0inℝnlim|x|→∞u(x)=0,under suitable assumptions on q and ω. Roughly speaking, the condition for existence states that if the measure data is locally controlled by the Riesz fractional capacity, then there is a global solution for the Problem (1). We also show that if a positive solution exists, necessarily the measure ω will be absolutely continuous with respect to the associated Riesz capacity, which gives a partial reciprocal of the main result of this work. Finally, estimates of u in terms of ω are also given in different function spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
de Borbón, María Laura; Ochoa, Pablo Daniel; A Capacity-Based Condition for Existence of Solutions to Fractional Elliptic Equations with First-Order Terms and Measures; Springer; Potential Analysis; 9-2020; 1-24
Compartir
Altmétricas