Mostrar el registro sencillo del ítem

dc.contributor.author
Navarro, Jose Pablo  
dc.contributor.author
Orlando, José Ignacio  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Iarussi, Emmanuel  
dc.date.available
2021-07-07T17:49:33Z  
dc.date.issued
2021-02  
dc.identifier.citation
Navarro, Jose Pablo; Orlando, José Ignacio; Delrieux, Claudio Augusto; Iarussi, Emmanuel; SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings; Wiley Blackwell Publishing, Inc; Computer Graphics Forum; 40; 1; 2-2021; 410-423  
dc.identifier.issn
0167-7055  
dc.identifier.uri
http://hdl.handle.net/11336/135664  
dc.description.abstract
Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes. In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end, we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven effective in sketches. Code, data and further resources will be publicly released by the time of publication.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
2D MORPHING  
dc.subject
IMAGE AND VIDEO PROCESSING  
dc.subject
IMAGE AND VIDEO PROCESSING  
dc.subject
IMAGE AND VIDEO PROCESSING  
dc.subject
IMAGE DATABASES  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-01T17:32:52Z  
dc.journal.volume
40  
dc.journal.number
1  
dc.journal.pagination
410-423  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ingeniería - Sede Puerto Madryn. Departamento de Informática; Argentina  
dc.description.fil
Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.journal.title
Computer Graphics Forum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cgf.14197  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1111/cgf.14197  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1912.05019