Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings

Navarro, Jose PabloIcon ; Orlando, José IgnacioIcon ; Delrieux, Claudio AugustoIcon ; Iarussi, EmmanuelIcon
Fecha de publicación: 02/2021
Editorial: Wiley Blackwell Publishing, Inc
Revista: Computer Graphics Forum
ISSN: 0167-7055
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes. In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end, we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven effective in sketches. Code, data and further resources will be publicly released by the time of publication.
Palabras clave: 2D MORPHING , IMAGE AND VIDEO PROCESSING , IMAGE AND VIDEO PROCESSING , IMAGE AND VIDEO PROCESSING , IMAGE DATABASES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 7.603Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/135664
URL: https://onlinelibrary.wiley.com/doi/10.1111/cgf.14197
DOI: https://doi.org/10.1111/cgf.14197
URL: https://arxiv.org/abs/1912.05019
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Navarro, Jose Pablo; Orlando, José Ignacio; Delrieux, Claudio Augusto; Iarussi, Emmanuel; SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings; Wiley Blackwell Publishing, Inc; Computer Graphics Forum; 40; 1; 2-2021; 410-423
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES