Mostrar el registro sencillo del ítem
dc.contributor.author
Storti, Mario Alberto
dc.contributor.author
Garelli, Luciano
dc.contributor.author
Paz, Rodrigo Rafael
dc.date.available
2017-03-06T18:12:21Z
dc.date.issued
2011-06
dc.identifier.citation
Storti, Mario Alberto; Garelli, Luciano; Paz, Rodrigo Rafael; A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 6-2011
dc.identifier.issn
0271-2091
dc.identifier.uri
http://hdl.handle.net/11336/13559
dc.description.abstract
In this article a new methodology for developing DGCL (for Discrete Geometric Conservation Law) compliant formulations is presented. It is carried out in the context of the Finite Element Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary Lagrangian Eulerian (ALE) scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is obtained. This new formulation is applied to the -family of time integration methods. In addition, an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier-Stokes equations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Finite Elements Method
dc.subject
Geometric Conservation Law
dc.subject
Arbitrary Lagrangian-Eulerian Method
dc.subject
Moving Meshes
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-03-01T17:49:34Z
dc.journal.pais
Reino Unido
dc.journal.ciudad
London
dc.description.fil
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Garelli, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
dc.journal.title
International Journal For Numerical Methods In Fluids
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/fld.2669
Archivos asociados