Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians

Storti, Mario AlbertoIcon ; Garelli, LucianoIcon ; Paz, Rodrigo RafaelIcon
Fecha de publicación: 06/2011
Editorial: John Wiley & Sons Ltd
Revista: International Journal For Numerical Methods In Fluids
ISSN: 0271-2091
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

In this article a new methodology for developing DGCL (for Discrete Geometric Conservation Law) compliant formulations is presented. It is carried out in the context of the Finite Element Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary Lagrangian Eulerian (ALE) scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is obtained. This new formulation is applied to the -family of time integration methods. In addition, an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier-Stokes equations.
Palabras clave: Finite Elements Method , Geometric Conservation Law , Arbitrary Lagrangian-Eulerian Method , Moving Meshes
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.681Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/13559
DOI: http://dx.doi.org/10.1002/fld.2669
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Storti, Mario Alberto; Garelli, Luciano; Paz, Rodrigo Rafael; A Finite Element Formulation Satisfying the Discrete Geometric Conservation Law Based on Averaged Jacobians; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 6-2011
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES