Mostrar el registro sencillo del ítem

dc.contributor.author
Leben, Leslie  
dc.contributor.author
Martinez Peria, Francisco Dardo  
dc.contributor.author
Philipp, Friedrich  
dc.contributor.author
Trunk, Carsten  
dc.contributor.author
Winkler, Henrik  
dc.date.available
2021-07-02T13:58:19Z  
dc.date.issued
2021-02  
dc.identifier.citation
Leben, Leslie; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten; Winkler, Henrik; Finite rank perturbations of linear relations and matrix pencils; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 2-2021; 1-37  
dc.identifier.issn
1661-8254  
dc.identifier.uri
http://hdl.handle.net/11336/135380  
dc.description.abstract
We elaborate on the deviation of the Jordan structures of two linear relations that are finite-dimensional perturbations of each other. We compare their number of Jordan chains of length at least n. In the operator case, it was recently proved that the difference of these numbers is independent of n and is at most the defect between the operators. One of the main results of this paper shows that in the case of linear relations this number has to be multiplied by n+ 1 and that this bound is sharp. The reason for this behavior is the existence of singular chains. We apply our results to one-dimensional perturbations of singular and regular matrix pencils. This is done by representing matrix pencils via linear relations. This technique allows for both proving known results for regular pencils as well as new results for singular ones.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
FINITE RANK PERTURBATIONS  
dc.subject
JORDAN CHAINS  
dc.subject
LINEAR RELATIONS  
dc.subject
SINGULAR MATRIX PENCILS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Finite rank perturbations of linear relations and matrix pencils  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-01T13:51:46Z  
dc.journal.volume
15  
dc.journal.number
2  
dc.journal.pagination
1-37  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Leben, Leslie. Technische Universität Ilmenau; Alemania  
dc.description.fil
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina  
dc.description.fil
Fil: Philipp, Friedrich. Technische Universität Ilmenau; Alemania  
dc.description.fil
Fil: Trunk, Carsten. Technische Universität Ilmenau; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Winkler, Henrik. Technische Universität Ilmenau; Alemania  
dc.journal.title
Complex Analysis and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01082-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11785-021-01082-x