Mostrar el registro sencillo del ítem
dc.contributor.author
Leben, Leslie
dc.contributor.author
Martinez Peria, Francisco Dardo
dc.contributor.author
Philipp, Friedrich
dc.contributor.author
Trunk, Carsten
dc.contributor.author
Winkler, Henrik
dc.date.available
2021-07-02T13:58:19Z
dc.date.issued
2021-02
dc.identifier.citation
Leben, Leslie; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten; Winkler, Henrik; Finite rank perturbations of linear relations and matrix pencils; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 2-2021; 1-37
dc.identifier.issn
1661-8254
dc.identifier.uri
http://hdl.handle.net/11336/135380
dc.description.abstract
We elaborate on the deviation of the Jordan structures of two linear relations that are finite-dimensional perturbations of each other. We compare their number of Jordan chains of length at least n. In the operator case, it was recently proved that the difference of these numbers is independent of n and is at most the defect between the operators. One of the main results of this paper shows that in the case of linear relations this number has to be multiplied by n+ 1 and that this bound is sharp. The reason for this behavior is the existence of singular chains. We apply our results to one-dimensional perturbations of singular and regular matrix pencils. This is done by representing matrix pencils via linear relations. This technique allows for both proving known results for regular pencils as well as new results for singular ones.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
FINITE RANK PERTURBATIONS
dc.subject
JORDAN CHAINS
dc.subject
LINEAR RELATIONS
dc.subject
SINGULAR MATRIX PENCILS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Finite rank perturbations of linear relations and matrix pencils
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-01T13:51:46Z
dc.journal.volume
15
dc.journal.number
2
dc.journal.pagination
1-37
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Leben, Leslie. Technische Universität Ilmenau; Alemania
dc.description.fil
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
dc.description.fil
Fil: Philipp, Friedrich. Technische Universität Ilmenau; Alemania
dc.description.fil
Fil: Trunk, Carsten. Technische Universität Ilmenau; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Winkler, Henrik. Technische Universität Ilmenau; Alemania
dc.journal.title
Complex Analysis and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01082-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11785-021-01082-x
Archivos asociados