Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Finite rank perturbations of linear relations and matrix pencils

Leben, Leslie; Martinez Peria, Francisco DardoIcon ; Philipp, Friedrich; Trunk, Carsten; Winkler, Henrik
Fecha de publicación: 02/2021
Editorial: Birkhauser Verlag Ag
Revista: Complex Analysis and Operator Theory
ISSN: 1661-8254
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We elaborate on the deviation of the Jordan structures of two linear relations that are finite-dimensional perturbations of each other. We compare their number of Jordan chains of length at least n. In the operator case, it was recently proved that the difference of these numbers is independent of n and is at most the defect between the operators. One of the main results of this paper shows that in the case of linear relations this number has to be multiplied by n+ 1 and that this bound is sharp. The reason for this behavior is the existence of singular chains. We apply our results to one-dimensional perturbations of singular and regular matrix pencils. This is done by representing matrix pencils via linear relations. This technique allows for both proving known results for regular pencils as well as new results for singular ones.
Palabras clave: FINITE RANK PERTURBATIONS , JORDAN CHAINS , LINEAR RELATIONS , SINGULAR MATRIX PENCILS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 501.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/135380
URL: http://link.springer.com/10.1007/s11785-021-01082-x
DOI: http://dx.doi.org/10.1007/s11785-021-01082-x
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Leben, Leslie; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten; Winkler, Henrik; Finite rank perturbations of linear relations and matrix pencils; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 2-2021; 1-37
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES