Artículo
Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions
Fecha de publicación:
07/2014
Editorial:
Elsevier
Revista:
Computers and Chemical Engineering
ISSN:
0098-1354
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, a model for the RAFT polymerization following the slow fragmentation approach was developed in order to obtain the full molecular weight distribution (MWD) using probability generating functions (pgf). A combination of univariate and bivariate pgf is applied to deal with the univariate chain length distributions of macroradical, dormant and dead polymer chains, and the bivariate distribution of the two arms intermediate adduct. This allows rigorous modeling of the polymerization system without simplifying assumptions. For comparison purposes, the population balances were solved by direct integration of the resulting equations. Our results show that the pgf technique allows obtaining an accurate solution efficiently in terms of computational time. What is more, the model provides a detailed characterization of the polymer that could be of great help for grasp the process fundamentals.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Fortunatti, Cecilia; Sarmoria, Claudia; Brandolin, Adriana; Asteasuain, Mariano; Prediction of the full molecular weight distribution in RAFT polymerization using probability generating functions; Elsevier; Computers and Chemical Engineering; 66; 7-2014; 214-220
Compartir