Mostrar el registro sencillo del ítem
dc.contributor.author
Console, Sergio
dc.contributor.author
Ovando, Gabriela Paola
dc.contributor.author
Subils, Mauro
dc.date.available
2017-02-24T20:07:44Z
dc.date.issued
2015-02
dc.identifier.citation
Console, Sergio; Ovando, Gabriela Paola; Subils, Mauro; Solvable models for Kodaira surfaces; Springer; Mediterranean Journal Of Mathematics; 12; 1; 2-2015; 187-204
dc.identifier.issn
1660-5446
dc.identifier.uri
http://hdl.handle.net/11336/13404
dc.description.abstract
In this work, we study families of compact spaces which are of the form G/Λk,iG/Λk,i for G the oscillator group and Λk,i<GΛk,i<G a lattice. The solvmanifolds G/Λk,iG/Λk,i are not pairwise diffeomorphic and one has the coverings G→Mk,0→Mk,π→Mk,π/2G→Mk,0→Mk,π→Mk,π/2 for k∈Zk∈Z . We compute their cohomologies and minimal models. Each manifold Mk, 0 is diffeomorphic to a Kodaira–Thurston manifold, i.e., a compact quotient S1×H3(R)/ΓkS1×H3(R)/Γk where ΓkΓk is a lattice of the real three-dimensional Heisenberg group H3(R)H3(R) . Furthermore, any Mk, 0 provides an example of a solvmanifold whose cohomology does not depend on the Lie algebra only. We explain some geometrical aspects of those compact spaces, to show how to distinguish them (by invariant complex, symplectic and metric structures). For instance, no invariant symplectic structure of G can be induced to the any quotient.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Solvmanifolds
dc.subject
Solvable Lie Group
dc.subject
Heisenberg Group
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Solvable models for Kodaira surfaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-02-23T13:54:56Z
dc.identifier.eissn
1660-5454
dc.journal.volume
12
dc.journal.number
1
dc.journal.pagination
187-204
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Console, Sergio. Universita di Torino; Italia
dc.description.fil
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina
dc.description.fil
Fil: Subils, Mauro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
dc.journal.title
Mediterranean Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00009-014-0399-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00009-014-0399-9
Archivos asociados