Artículo
Solvable models for Kodaira surfaces
Fecha de publicación:
02/2015
Editorial:
Springer
Revista:
Mediterranean Journal Of Mathematics
ISSN:
1660-5446
e-ISSN:
1660-5454
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we study families of compact spaces which are of the form G/Λk,iG/Λk,i for G the oscillator group and Λk,i<GΛk,i<G a lattice. The solvmanifolds G/Λk,iG/Λk,i are not pairwise diffeomorphic and one has the coverings G→Mk,0→Mk,π→Mk,π/2G→Mk,0→Mk,π→Mk,π/2 for k∈Zk∈Z . We compute their cohomologies and minimal models. Each manifold Mk, 0 is diffeomorphic to a Kodaira–Thurston manifold, i.e., a compact quotient S1×H3(R)/ΓkS1×H3(R)/Γk where ΓkΓk is a lattice of the real three-dimensional Heisenberg group H3(R)H3(R) . Furthermore, any Mk, 0 provides an example of a solvmanifold whose cohomology does not depend on the Lie algebra only. We explain some geometrical aspects of those compact spaces, to show how to distinguish them (by invariant complex, symplectic and metric structures). For instance, no invariant symplectic structure of G can be induced to the any quotient.
Palabras clave:
Solvmanifolds
,
Solvable Lie Group
,
Heisenberg Group
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Console, Sergio; Ovando, Gabriela Paola; Subils, Mauro; Solvable models for Kodaira surfaces; Springer; Mediterranean Journal Of Mathematics; 12; 1; 2-2015; 187-204
Compartir
Altmétricas