Mostrar el registro sencillo del ítem
dc.contributor.author
Beccaria, Ezequiel

dc.contributor.author
Bogado, Verónica Soledad

dc.contributor.author
Palombarini, Jorge Andrés

dc.date.available
2021-06-08T17:53:14Z
dc.date.issued
2021-06-07
dc.identifier.citation
Beccaria, Ezequiel; Bogado, Verónica Soledad; Palombarini, Jorge Andrés; A DEVS Based Methodological Framework for Reinforcement Learning Agent Training; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 4; 7-6-2021; 679–687
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/133449
dc.description.abstract
Reinforcement Learning has become one of the fastest growing fields of artificial intelligence due to the successful application of its techniques into several domains. In this way, the integration of intelligent agents based on Reinforcement Learning into information systems is a current reality. However, the way in which they “learn” requires a simulation model of the process that must be controlled to obtain large volumes of risk-free information. In this work, a methodological framework to support the training of Reinforcement Learning agents using DEVS is proposed. This framework provides the steps and elements required to implement RL Agents with the purpose of accelerating the agent learning and reducing training costs. Also, it allows modeling the dynamics of complex systems in a modular and hierarchical way, favoring the reuse of simulation components, since it is based on DEVS formalims fundamentals.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Support for Training RL Agents
dc.subject
Reinforcement Learning
dc.subject
DEVS
dc.subject
AI-enabled systems
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
A DEVS Based Methodological Framework for Reinforcement Learning Agent Training
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-06-07T15:30:37Z
dc.journal.volume
19
dc.journal.number
4
dc.journal.pagination
679–687
dc.journal.pais
Estados Unidos

dc.journal.ciudad
New York
dc.description.fil
Fil: Beccaria, Ezequiel. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
dc.description.fil
Fil: Bogado, Verónica Soledad. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina
dc.journal.title
IEEE Latin America Transactions

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/3873
Archivos asociados