Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A DEVS Based Methodological Framework for Reinforcement Learning Agent Training

Beccaria, Ezequiel; Bogado, Verónica SoledadIcon ; Palombarini, Jorge AndrésIcon
Fecha de publicación: 07/06/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Reinforcement Learning has become one of the fastest growing fields of artificial intelligence due to the successful application of its techniques into several domains. In this way, the integration of intelligent agents based on Reinforcement Learning into information systems is a current reality. However, the way in which they “learn” requires a simulation model of the process that must be controlled to obtain large volumes of risk-free information. In this work, a methodological framework to support the training of Reinforcement Learning agents using DEVS is proposed. This framework provides the steps and elements required to implement RL Agents with the purpose of accelerating the agent learning and reducing training costs. Also, it allows modeling the dynamics of complex systems in a modular and hierarchical way, favoring the reuse of simulation components, since it is based on DEVS formalims fundamentals.
Palabras clave: Support for Training RL Agents , Reinforcement Learning , DEVS , AI-enabled systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 789.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/133449
URL: https://latamt.ieeer9.org/index.php/transactions/article/view/3873
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Beccaria, Ezequiel; Bogado, Verónica Soledad; Palombarini, Jorge Andrés; A DEVS Based Methodological Framework for Reinforcement Learning Agent Training; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 4; 7-6-2021; 679–687
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES